ITEM <u>24</u> REPORTS <u>28/10/19</u>

NORTH SYDNEY COUNCIL REPORTS

Report to General Manager

Attachments: 1. Preliminary Site Contamination Report 2. Stage 1 Engagement Summary 3. Stage 2 Engagement Summary (Survey)

SUBJECT: Ex Waverton Bowling Club Site - Post Engagement

AUTHOR: Rob Emerson, Director Open Space and Environmental Services

EXECUTIVE SUMMARY:

As previously reported to Council, when the Waverton Bowling Club went into liquidation, Council staff contacted the NSW Department of Industry - Crown Reserves strongly advocating that this parcel of land should revert on a permanent basis to North Sydney Council's care and control, as per the remainder of the parkland surrounding the Club.

Council gained a six-month lease, executed on 7 May 2019, that fundamentally allowed Council to carry out the initial due diligence on the site including a building condition assessment, a preliminary contamination review and a risk assessment of the grounds. The reports assist in informing the consideration of the future uses for the site; as well as community engagement to determine the preferred specific use of the site (within the sport and recreation reserve category), concurrent with advancing the reintegration of the site into the surrounding Crown Lands.

Council at its meeting of 24 June 2019 resolved (Min. No. 183):

1. THAT Council complete the proposed community engagement for the Ex Waverton Bowling Club Site.

2. THAT on completion of the community engagement a report on the outcomes of the consultation are reported to Council for consideration.

3. THAT an additional \$17,500 be made available from the Hayes Street Land & Beach Improvements project to undertake the preliminary contamination site investigation.

In accordance with the above-mentioned resolution, the engagement outcomes are reported to Council, to inform the Council's decision on the proposed long-term future use of the site that will form the application to the NSW Department of Industry - Crown Reserves for tenure in perpetuity.

FINANCIAL IMPLICATIONS:

There are no current financial implications in advocating that the Ex Waverton Bowling Club land be reintegrated into the existing Waverton Park Reserve under Councils Care and Control for the purpose of providing parkland for public recreation. However, in the event the State Government agrees to transfer the land to Council as parkland for public recreation then a cost estimate will need to be prepared and considered in subsequent financial years for ongoing grounds maintenance, the development of a masterplan and future demolition and desired construction works for the site.

RECOMMENDATION:

1. THAT Council write to the NSW Department of Industry - Crown Reserves strongly advocating the position that the Ex Waverton Bowling Club land must be reintegrated into the existing Waverton Park Reserve under Council's Care and Control for the purpose of providing parkland for public recreation.

2. THAT Council request that the Local Member Felicity Wilson be advised of the community position and asked to advocate for the land to be returned as community parkland for the purpose of providing public recreation.

LINK TO COMMUNITY STRATEGIC PLAN

The relationship with the Community Strategic Plan is as follows:

Direction:	1. Our Living Environment
Outcome:	1.4 Public open space and recreation facilities and services meet community needs

BACKGROUND

The site is located on Woolcott Street, Waverton and sits within the Waverton Park, Crown Reserve. The land was originally gifted to the Crown by the Berry Estate to provide sporting and recreational facilities to the residents of Waverton.

The Waverton Bowling Club was formed in 1947 to play on the proposed bowling green to be constructed in the park in 1948, the second green was constructed in 1950.

The clubhouse had been fabricated during World War II for a hospital in Indonesia. It was delayed being shipped and after the War, was purchased by the newly formed Bowling Club.

North Sydney Council contacted NSW Crown Land (within NSW Department of Industry) when the Waverton Bowling Club went into liquidation, advocating that this parcel of land should revert on a permanent basis to Council's care and control for public recreation, like the remainder of the parkland surrounding the Club.

Council at its meeting of 24 June 2019 resolved (Min. No. 183):

1. THAT Council complete the proposed community engagement for the Ex Waverton Bowling Club Site.

2. THAT on completion of the community engagement a report on the outcomes of the consultation are reported to Council for consideration.

3. THAT an additional \$17,500 be made available from the Hayes Street Land & Beach Improvements project to undertake the preliminary contamination site investigation.

Council's Sport and Recreation Reference Group at its meeting of 19 August 2019 considered a report detailing the adopted Engagement Strategy and the findings of the Stage 1 engagement. The minutes of the Reference Group meeting were reported to Council on 23 September 2019 (Min. No. 260).

CONSULTATION REQUIREMENTS

Community engagement was undertaken in accordance with Council's Community Engagement Protocol.

SUSTAINABILITY STATEMENT

The sustainability implications are of a minor nature and did not warrant a detailed assessment.

DETAIL

1. Council's Guiding Strategies/Related Consultations

The opportunity to acquire this site, through re-amalgamation into the surrounding Crown Reserve, is not a specific project identified in the adopted Delivery Program and Budget, however, does relate to the following overarching Council strategies:

1.1 North Sydney Community Strategic Plan 2018-2028

This Plan sets the future direction for the community of North Sydney. The Plan identifies the community's main priorities and aspirations for its future, and details strategies for achieving them. The Plan identifies a key challenge as being the growing demand for sport, recreation and open space. An increasing population means that the demand for open space and sporting and recreation facilities grows. Our challenge is to plan and manage the demand for active and passive recreation and leisure opportunities from our community and visitors with the limited land available.

1.1.1 Delivery Program 2018/19-2020/21

This opportunity relates to the following 'projects' of the adopted Delivery Program under Outcome 1.4 Public open space and recreation facilities and services meet community needs:

- 1.4.1.2 Investigate opportunities to provide new open space.
- 1.4.1.5 Investigate potential additional public open space opportunities through redundant crown land uses.
- 1.4.1.7 Initiate contact with owners of land with potential for use as public open space and to lease these for public use.

1.2 North Sydney Recreation Needs Study 2015

This Study was prepared with the consultants @Leisure and carried out with a high level of community and stakeholder engagement, the Study identifies and analyses the demand for recreation and sports facilities across the North Sydney LGA in order to determine future needs. It forms the basis for future decision-making regarding sport and recreation development in North Sydney. The Study allows Council to provide recreation and sporting facilities and services that meet identified community needs over the next five to ten years.

1.3 Open Space Provision Strategy 2009

North Sydney's network of parks, reserves and civic spaces are under ever-increasing pressure, and the lack of available land and its high cost mean that catering for the open space and recreational needs of a growing population presents a significant challenge. The Strategy is a strategic framework to help assess new open space and recreation sites. The strategy's Site Assessment Procedure aims to ensure that any new open space meets the needs of the population, identifies useful and usable sites in areas of population growth and low open space provision, and does so in an economical and financially sustainable manner.

2. Building Condition Report

The independently conducted building condition assessment report was reported to the Council on 24 June 2019. In summary, the report found that:

"The building is in very poor condition. There is evidence of termites, rot and potential structural issues.

The site has been vacated and the kitchen/bar equipment have all been removed.

Based upon the inspection, a series of works have been identified and budget estimates allowed to rectify. Where further specialist investigation is necessary, we have allowed a budget to undertake the inspection, but the outcomes from the inspections will determine the scope of work and associated cost.

To make this building habitable/rentable, significant works would be required in the order of approximately \$360,000 (10% contingency inclusive). Most works in the list are to be addressed in the immediate term (i.e. 2019/20). There are a couple of lifecycle replacement works required in future years...

A number of structural issues were noted which require more detailed investigation. A budget has been allowed for the investigation, but the cost of rectifying cannot be determined until the findings are complete:

- The wall above the main entry shows evidence of rot/termite damage;
- The roof structure outside the office; and
- The foundation brick wall.

The roof requires repair including replacement of gutters and downpipes, and repairs to leaking skylights. The façade cladding shows signs of rot and requires recladding. The verandah floor joists are rotting in various locations and require replacement.

There is evidence of termite damage and a termite investigation/treatment is required. Improved accessibility access is required to meet current code which includes an entry ramp and accessible amenities. A nominal budget allowance of \$30,000 has been allowed to create an accessible bathroom.

A full internal and external repaint is require and the replacement of floor coverings has been allowed.

The amenities are in fair condition; however, the vanities have rotted and an allowance to replace has been made. We have not allowed to refurbish the bathrooms completely.

No allowance has been included for the reinstatement of the kitchen.

The air conditioning units are in reasonable condition and their replacement is not expected for at least 5-7yrs."

Based on the building condition report and buildings poor aesthetic and functional qualities it is considered that there is little value in retaining the building in any future development of the site.

3. Site Contamination Report

The preliminary site contamination assessment was undertaken by Golder Associates Pty Ltd (Attachment 1). In summary, the report found that:

"Based on the Preliminary environmental Investigation and limited soil investigation performed at the Waverton Bowling Club site it is considered that the overall potential for widespread significant soil contamination in near surface material to exist at the site is low. The concentrations of potential contaminants of concern were generally below levels considered suitable for recreational land use. However, the following areas of the site are considered to require management or further assessment prior to use of the site for publicly accessible recreational purpose:

- Surface soil along the southern side of the clubhouse where asbestos cement fragments have been identified and an exceedance of the adopted criterion for asbestos in the soil was reported.
- The locations at the southern side of the clubhouse where benzo(a)pyrene and asbestos were detected at concentrations above the adopted criteria.
- Soil with the potential to be impacted by pathogens in the vicinity of the septic tanks.
- Sub-building soil which has the potential to be impacted by e.g. application of termiticides or leakage from chemicals used to maintain greens. The sub building soil is currently not accessible and would not to be expected to pose a risk to recreational users of the site until exposed by e.g. building demolition.
- Deeper fill material may be impacted by e.g. gasworks waste. Whilst this does not appear to preclude the no-intrusive recreational use of the site, these materials would require further assessment if redevelopment involving earthworks is proposed."

4. Risk Assessment

The risk assessment was undertaken in-house and the relatively minor risks identified were rectified prior to the site being publicly opened for community access.

5. Community Engagement

The Community Engagement Strategy (as adopted 24 June 2019) was undertaken in two stages. The Stage 1 engagement findings as presented to the Sport and Recreation Committee on 19 August 2019 are attached (Attachment 2).

5.1 Stage 1

Stage 1 involved preliminary consultation with identified 'known' key stakeholders, including all Precinct Committees, Waverton Peninsula Working Group members and Sport and Recreation Reference Group members and Waverton Hub to determine after consideration of the site's constraints and opportunities, a few potential options for the future of the site. The purpose of the Stage 1 engagement was to seek suggested preferred uses of the site; not to quantify feedback/preference for the options suggested.

Stage 1 was undertaken from 27 June to 24 July 2019. Council invited key stakeholders to suggest proposed use of the site to inform the Stage 2 wider engagement. A total of 61 emails were received from the following stakeholders:

- 7 from Sport and Recreation Reference Group members, including 6 sporting clubs and one individual;
- 1 from Waverton Peninsula Working Group member;
- 5 from Precinct Committees;
- 1 from Waverton Hub;
- 27 from residents, including individual members of Precinct Committees (14 contained similar content/form submission); and
- 20 'other' no address provided for confirmation as to whether are local resident (11 contained similar content/form submission).

Council staff collated and analysed Stage 1 submissions. There was a broad range of uses suggested, however, regardless of the preferred use, the unified theme of submissions was that the site needs to remain as public land and meet community needs.

5.2 Stage 2

Stage 2 ran from 19 August to 15 September 2019 and sought wider community feedback via a survey, on the identified uses for the site, seeking ranking/prioritisation of the options provided and written submissions.

Stage 2 promotion/engagement included the following channels:

- Your Say North Sydney project webpage total visits 1.1K; 828 viewed the page only (aware); 133 visitors downloaded documents (informed); and 332 visitors made a submission online (engaged):
 - Of the total 'informed' visitors:
 - 14 people viewed the site photos with a total of 28 downloads; and
 - 119 people viewed the document library with a total of 251 downloads 72 Project Background downloads, 64 Stage 1 Engagement Report downloads, 53 Stage 2 Survey (hard copy) downloads, 43 Engagement Strategy downloads and 19 Council Report 24 June 2019 (Building Condition Report) downloads.
- Social media, including:
 - Council Facebook Post 1 (paid boost) 9,784 Reach; 1,970 Engagements; 1,748 Post Clicks; 80 Comments, 125 Reactions and 17 Shares;
 - Council Facebook Post 2 (paid boost) 5,921 Reach; 558 Engagements; 502 Post Clicks; 12 Comments, 29 Reactions and 15 Shares;
 - Mosman Living Facebook (paid advert) 22,240 members; 2 Comments and 3 Reactions;
 - North Shore Living Facebook (paid advert) 4,736 members; 4 Comments and 6 Reactions;
 - North Shore Mums Facebook (organic reach) 781 Reach; 21 Engagements; and 21 Post Clicks;
 - Instagram Post 1 Impressions: 1,542; Reach: 1,010; Hearts: 65; Comments 4;
 - Instagram Post 2 Impressions: 1,002; Reach: 703; Hearts: 32; Comments 2;
 - Twitter Post 1 Impressions: 1,173; Total Engagement: 19; Likes: 1, Retweets: 1; and

- Twitter Post 2 Impressions: 611; Total Engagement: 6; Likes: 2, Retweets: 0.
- Council e-newsletter September issue (1,168 subscribers; Unique Opens: 481 (41.32% open rate); Clicked the Link: 30);
- Precincts e-newsletter weekly for Stage 2 duration/five weeks (160 total subscribers; total Unique Opens: 320; total Clicked a Link: 14); and
- adverts ran in the Mosman Daily on 22 August and 5 September 2019 it also ran in the Council Round Ups Council Round up in the news section on 22 August.

A total of 384 Stage 2 responses were received:

- 342 online survey responses; and
- 42 written submissions of these, 19 were written submissions/emails and 23 comments via social media.

The Stage 2 engagement survey findings as Attachment 3. In summary:

- Majority preference is passive recreation (54%), followed by active recreation (42%).
- Majority preference for passive recreation is for social/family recreational space (71%), followed by green open space for relaxation (19%) and other (6%).
- Respondents were asked to rank their passive recreation preferences if the site is to be used for social/family space, majority preference is for picnic tables and seating, BBQ facilities and shade structure/s.
- Majority preference (average ranking) for active recreation is lawn bowls, including bare foot bowls/casual bowls/boules (average ranking 3.56), followed by 'other' (average ranking 3.94) and outdoor exercise equipment (average ranking 4.06).
- 89% of respondents were from the North Sydney LGA (304 of total 342 responses) Waverton (35%), followed by Wollstonecraft (20%) and North Sydney (11%). 11% (38) of respondents were from outside the North Sydney LGA.
- 79% of respondents are not associated with a sporting group while 21% are.
- 87% of respondents are not associated with a community group while 13% are.

A total of 43 submissions were received from the following stakeholders (where submitter contact details were provided):

- 11 from residents;
- 1 from a Waverton Peninsula Working Group member;
- 2 from Precinct Committees;
- 1 from a local school;
- 2 commercial operators requesting consideration to operate from the premises; and
- 1 not-for-profit group requesting consideration to operate from the premises.

Whilst the written submissions were free form, they can be categorised by preferred site use:

- 6 support passive recreation, including integration with existing surrounding parklands/playground/dog off leash area, with new facilities/public amenities, permaculture;
- 7 support joint passive recreation/multi-purpose community centre with café;
- 8 support active recreation, including water play park, tennis courts, indoor sports centre, pre/post game facilities or clubhouse;

- 6 support a commercial venture e.g. café/club/wine bar/child care;
- 6 support a multi-purpose community centre, including health and wellbeing classes, arts and craft classes, accommodation for not-for-profit groups, venue hire integrated into surrounding parklands/playground; and
- 9 suggested other uses (not in any order):
 - Markets
 - Aboriginal Arts and Cultural Centre
 - Parking
 - Temporary activations e.g. cinema, ice skating

When the survey and written submissions are considered together, there is majority preference for passive recreation with some form of facilities/amenities over active recreation.

The Stage 1 and Stage 2 feedback should be considered together as not all stakeholders who participated in Stage 1 participated in Stage 2.

6. Next Steps/Recommendations

There was a broad range of uses suggested in the Stage 2 engagement process however as per stage one engagement regardless of the specific preferred use, the unified theme of community submissions was that the site needs to remain as public land for public recreation that meet community needs.

Whilst there was differing views on what specific purpose the site should be ultimately used for i.e. either passive recreation (54% of respondents) or active recreation (42% of respondents) parkland or a mixture of both the strong position that needs to be articulated to the State Government through NSW Crown Land (within NSW Department of Industry) is that the land must be reintegrated into the existing Waverton Park Reserve for the purpose of providing parkland for public recreation that meets the community's needs.

In the event the Council is successful, and the State Government agrees to transfer the land to Councils Care and Control as parkland for public recreation the community engagement undertaken will be the basis for informing the development of a masterplan for the site.

REPORT PRELIMINARY SITE INVESTIGATION

Former Waverton Bowling Club Site, Woolcott Street, Waverton

Submitted to: North Sydney Council 200 Miller Street North Sydney NSW 2060

Submitted by:

Golder Associates Pty Ltd

Level 8, 40 Mount Street, North Sydney, New South Wales 2060, Australia

+61 2 9478 3900

19126714-001-R-RevA

25 September NSW

Page 11

Distribution List

North Sydney Council Golder Associates Pty Ltd

Table of Contents

1.0	INTRODUCTION1			
2.0	SITE DESCRIPTION			
	2.1	Site Identification	2	
	2.2	Current Site Description	2	
	2.2.1	Surrounding Land Use	2	
	2.3	Site Inspection	3	
3.0	SITE	HISTORY		
	3.1	Sources of Information		
	3.2	Historical Aerial Photographs		
	3.3	Historical Certificates of Titles		
	3.4	On-line Records	7	
	3.5	Street Directories	7	
	3.6	Previous Environmental Assessment Reports	7	
	3.7	Site History Summary		
4.0	ENVI	RONMENTAL SETTING	8	
	4.1	Topography and Drainage	8	
	4.2	Surface Water	8	
	4.3	Geology and Hydrogeology	8	
	4.3.1	Geology	8	
	4.3.2	Soils and Landscapes	8	
	4.3.3	Lithology	8	
	4.3.4	Acid Sulfate Soils	8	
	4.3.5	Hydrogeology	9	
	4.3.6	Groundwater Management Zones	9	
	4.4	Climate	9	
5.0	REG	ULATORY AGENCY RECORDS SEARCHES	.10	
	5.1	NSW Environment Protection Authority	.10	
	5.1.1	CLM Act Notices	.10	
	5.1.2	Notifications under Section 60 of the CLM Act	.11	

	5.1.3	EPLs under the POEO Act	11	
	5.1.4	Penalty Notices Issued under the POEO Act	12	
	5.2	Local Council	12	
	5.3	Department of Defence	13	
6.0	PREL	LIMINARY INTRUSIVE INVESTIGATION PROGRAM	14	
7.0	SUM	MARY OF ASSESSMENT	16	
	7.1	Summary	16	
	7.2	Potential Contamination Risk	16	
8.0	0 CONCEPTUAL SITE MODEL			
9.0	0 CONCLUSIONS			
10.0	0 LIMITATIONS			
11.0	.0 REFERENCES			

TABLES

TABLES	
Table 1: Site Identification, Location and Setting	2
Table 2: Surrounding Land Use	2
Table 3: Historical Aerial Photograph Review	5
Table 4: Summary of Land Title Information	7
Table 5: CLM Notice Search Results	10
Table 6: Section 60 Notification Search Results	11
Table 7: EPL Search Results	12
Table 8: Preliminary Conceptual Site Model	19

FIGURE

Figure 1 Site Layout, Features and Investigation Locations

APPENDICES

APPENDIX A Site Inspection Photographs

APPENDIX B Aerial Photographs

APPENDIX C Land Titles Search Results

APPENDIX D Groundwater Bore Search Results

25 September NSW

19126714-001-R-RevA

Page 14

APPENDIX E EPA Register Search Results

APPENDIX F Section 10.7 Planning Certificate

APPENDIX G Defence UXO Records Search Results

APPENDIX H Borelogs

APPENDIX I Laboratory Certificates

APPENDIX J Summary Table

APPENDIX K Data Validation Records

APPENDIX L Limitations

1.0 INTRODUCTION

North Sydney Council ('Council') engaged Golder Associates Pty Ltd (Golder) to perform a Phase 1 Preliminary Site Investigation (Phase 1 PSI) of the former Waverton Bowling Club site located at Woolcott Street, Waverton NSW (the site). It is understood that the bowling club site is vacant, and that Council is considering entering into a long term lease of the site for use for recreational purposes. The purpose of the assessment was to provide Council with an assessment of potential contamination risk to inform Council's pre-lease due diligence process. The scope of work for the Phase 1 PSI comprised:

- Review of:
 - Certificate of title information to provide a history of ownership and land use;
 - Historical aerial photographs to provide evidence of the history of the sites and the surrounding land uses;
 - Published topographical, geological and hydrogeological information of the area;
 - Environmental registers maintained by the NSW Environment Protection Authority;
 - A Section 10.7 Planning Certificate for the site issued by Council;
- Site inspections;
- A limited soil investigation program; and
- Preparation of this report.

2.0 SITE DESCRIPTION

2.1 Site Identification

The site is the location of the former Waverton Bowling Club located on Woolcott Street Waverton. **Table 1** summarises the identification, location and setting of the site.

A site plan showing the location is attached as Figure 1.

Table 1: Site Identification, Location and Setting

Item	Details	
Street Address	Woolcott Street Waverton	
Approximate Site Area	5,120 m ²	
Current Land Use	Recreational use	
Legal Property Description	Lot 1205 in Deposited Plan (DP) 752067	
Approximate Geographic Co-ordinates (GDA94- MGA56)	333260 mE 6254135 mN	
Local Government Area and Land Use Zoning	North Sydney Council RE1 Public Recreation	

2.2 Current Site Description

The site occupies Lot 1205 in DP 752067 on the southern side of Woolcott Street. The site is irregularly shaped and has an area of approximately 5,120 m². The majority of the site is occupied by two lawn bowling greens which are separated by an open grassed area. The southern part of the site is occupied by the former bowling clubhouse building. The clubhouse building was constructed of various materials including brick, timber and cement sheeting. The rear of the building is elevated above the adjoining Waverton Park, with the area below the building bricked-off to prevent access. Two storage areas were located on the eastern end of the building. A third storage area was located adjacent to the western end of the building. Two septic tanks are located in the south eastern corner of the site. The majority of the site was delineated by low wire mesh fencing, with the clubhouse building forming part of the southern boundary.

2.2.1 Surrounding Land Use

The site is located in an area of predominantly residential land use. Residential land use is present to the north of Woolcott Street and further to the east and west of the site. Waverton Park abuts the western and southern boundaries of the site. Merrett Playground abuts the eastern boundary of the site. Berrys Bay is located further to the south. The surrounding land uses noted at the time of the site inspection are identified in **Table 2**. The nearest sensitive receivers are considered to be the playground located to the east and Berrys Bay located approximately 110 m to the south.

Table 2: Surrounding Land Use

Direction	Details	
North	Woolcott Street, residential land use, then the North Shore Railway.	

Direction	Details	
East	ferrett Playground, a railway siding, then residential land use.	
South	Waverton Park then Berrys Bay	
West	Waverton Park, Larkin Street, then residential land use.	

2.3 Site Inspection

An inspection of the site was completed on 22nd August 2019. The inspection was performed by Mr Shane Doyle. Meteorological conditions during the inspection were overcast, with an approximate temperature of 16°C. Follow up inspections were performed on 2nd and 19th September 2019 to attempt to access the interior of the structures on the site. Observations made during the site inspections and information obtained from the site representative are summarised below. Photographs taken during the inspections are presented in **Appendix A** and the location of significant features shown on **Figure 1**.

The site was a vacated lawn bowling club located on the southern side of Woolcott Street with a children's playground (Merrett Playground) to the east and Waverton Park to the west and south.

Two bowling greens occupied the majority of the northern part of the site. The greens were located at a level approximately 2 m lower than Woolcott Street, with a bank and retaining wall present between the greens and street level. The greens were surrounded by cement paths (**Photograph 1** to **Photograph 5**). The gutter linings on the eastern green were fabricated of metal and cement render. The gutters of the western green had been filled and the gutter linings were not visible. The area between the greens was largely grass covered with a cement paved driveway running from Woolcott Street to the club house building located at the central southern part of the site (**Photograph 6** and **Photograph 8**). A sandstone outcrop was observed at the northern end of this part of the site (**Photograph 7**). Cement paths were present around the greens and along the northern side of the club house. No evidence of distressed vegetation across the greens and central portion of the site was observed. Blue staining¹ was not observed on the retaining walls or sandstone bedrock along the northern side of the site.

The ground floor of the club house building was approximately level with the greens and open area. The subfloor area at the rear of the club house building had been bricked in (**Photograph 9** and **Photograph 10**). Oil staining was visible below a door to the sub-floor area (**Photograph 11**). The sub-floor area, accessed during a subsequent inspection, appeared to have been used for storage purposes (**Photograph 12**). There was no evidence of high voltage equipment, such as an electrical transformer, in the sub floor area. Some of the pavers in the area were discoloured, potentially from spillage or leakage of stored materials. Sandstone rubble fill was observed extending to the north below the club house building. Fragments of suspected asbestos cement sheet were observed on the ground surface along the southern side of the building (**Photograph 13** and **Photograph 14**).

Two septic tanks were located near the south east corner of the club building (**Photograph 15** and **Photograph 16**). A plan obtained in the land titles search (**Section 3.3**) showed the presence of one septic tank in this area in 1967. Rubble fill was present in the area of the septic tanks (**Photograph 17**).

Access to the interior of the building and the ground level storage areas was available during the follow up inspections. The easternmost storage area, which was accessed through a roller shutter, had a concrete slab

¹ Due to the presence of a ferric ferrocyanide complex, known as "blue billy", commonly associated with gasworks waste.

25 September NSW

floor. This storage area had a leaking roof, which resulted in the floor slab being wet and preventing observations of potential staining. An area of potential oil staining was present on the western wall (**Photograph 18**). The adjoining storage area, accessed from the club house, housed wastewater treatment equipment (**Photograph 19**). Minor staining of the floor slab of the western storage area, which was separate from the club house building, was observed (**Photograph 20**). The central part of the main building was an open area (**Photograph 21**), with amenities and offices on the western side of the building and bar and associated facilities on the eastern side.

An honour board located in a storage area indicated that the Waverton Bowling and Recreation Club, a former occupant of the site, was founded in 1947.

3.0 SITE HISTORY

3.1 Sources of Information

Golder undertook an historical review to provide information on previous land use and activities at the site and in the surrounding area, which may have contributed to potential site contamination. The following information sources were reviewed/consulted:

- Historical aerial photographs from the period 1943 to 2019;
- Current and historical Certificates of Title; and
- On-line records.

The outcomes of the site historical review are provided in the following sections.

3.2 Historical Aerial Photographs

Historical aerial photographs from 1943, 1951, 1961, 1972, 1982, 1991 and 1999 were obtained from SIX Maps and NSW Land and Property Information (LPI) for review. Aerial imagery from 2009, 2015 and 2019 was accessed via Nearmap. Copies of the aerial photographs referenced above are included in **Appendix B**.

The aerial photograph review was conducted to ascertain a general history of the development of the site and surrounding area. This review is summarised in **Table 3**.

Table 3: Historical Aerial Photograph Review

Year	Observations		
1943	Site : The location of the site appeared to be a vegetation covered filled area to the south of Woolcott Street.		
	Surrounding area : Residential type structures were present to the north of Woolcott Street and west of Larkin Street. The location of Waverton Park to the south of the site appeared to be a low lying, possibly tidal flats at the northern end of Berrys Bay. Although not visible on the image in Appendix B , the former Oyster Cove gasworks were visible to the north west and the former BP oil terminal was visible to the south of the south of the site on the western side of Berrys Bay.		
1951	Site : Two square features and a building were present on the site, consistent with the current layout of the site. The square features are assumed to be the existing bowling greens. The building was in the location of the existing club house.		
	Surrounding area : The area to the immediate east of the site appeared to have been levelled and cleared of high vegetation. The surrounding area otherwise appeared similar to that shown in the 1943 aerial photograph.		
1961	Site: The site appeared similar to that shown in the 1951 aerial photograph.		
	Surrounding area : The area to the immediate south of the site had been filled. A seawall had been constructed at the northern end of Berrys Bay and filling behind the seawall was assumed to have occurred.		

Year	Observations		
1972	Site : A number of features, possibly trees, were present in the central area of the site between the two bowling greens. The size and appearance of the roof of the club house building on the site had changed, possibly indicating the presence of an extended or new club house structure.		
	Surrounding area : High rise structures were visible to the north of the North Shore Railway line. The surrounding area otherwise appeared similar to that shown in the 1961 aerial photograph.		
1982	Site : A small rectangular feature, consistent with the storage area observed during the site inspection, was present on the eastern side of the club house building. The site otherwise appeared similar to that shown in the 1972 aerial photograph.		
	Surrounding area : Medium density residential buildings were visible on the northern side of Woolcott Street. The surrounding area otherwise appeared similar to that shown in the 1972 aerial photograph.		
1991	Site: The site appeared similar to that shown in the 1982 aerial photograph.		
	Surrounding area : High rise development had continued to occur to the north of the North Shore Railway line. The surrounding area otherwise appeared similar to that shown in the 1982 aerial photograph.		
1999	Site : A small rectangular feature, consistent with the storage area observed during the site inspection, was present on the western side of the club house building. The site otherwise appeared similar to that shown in the 1991 aerial photograph.		
	Surrounding area : The former BP oil terminal to the south of the site was being redeveloped. Additional medium density residential buildings were visible on the northern side of Woolcott Street.		
2009	Site: The site appeared similar to that shown in the 1999 aerial photograph.		
	Surrounding area : The surrounding area otherwise appeared similar to that shown in the 1999 aerial photograph.		
2015	Site : A number of features, potentially tents or marquees, were present in the area between the two bowling greens. The site otherwise appeared similar to that shown in the 1999 aerial photograph.		
	Surrounding area : The surrounding area otherwise appeared similar to that shown in the 2009 aerial photograph.		
2019	Site : The assumed tents or marquees had been removed from the site. The site otherwise appeared similar to that shown in the 2015 aerial photograph.		
	Surrounding area : The surrounding area otherwise appeared similar to that shown in the 2015 aerial photograph.		

3.3 Historical Certificates of Titles

A summary of the historical ownership of the site is presented in **Table 4**. Copies of the available titles and plans are included as **Appendix C**.

Table 4: Summary of L	and Title Information
-----------------------	-----------------------

Year	Source	Comment	
Undated	1205/752067	Owner identified as the State of New South Wales The title search indicated that the certificate of title had not been issued.	
Undated	Prior title search	Prior title to the site was Crown Land	
1967	Crown Plan 9325.2030	The plan shows the presence of two bowling greens, a club house, a small shed and a septic tank on the site.	

3.4 **On-line Records**

A search of on-line records² indicated that the location of the site was part of two acres (approximately 8,100 m²) acquired in 1944 by North Sydney Council to form a recreational reserve. The purported previous ownership of the site by Council is inconsistent with the results of the land titles search. The recreational reserve was to include a bowling club and children's playground. Part of the area below the current bowling greens and Waverton Park were reported to have been filled with waste material, identified as clinker, from the Oyster Cove gasworks. The fill was reported to have been replaced following ignition of gases emanating from the gasworks waste (NSHS 1994).

3.5 Street Directories

A 1934 street directory did not identify the presence of the bowling club at the site. Directories dating from the early 1970s onwards identified the bowling club and Waverton Park.

3.6 **Previous Environmental Assessment Reports**

Golder is not aware of previous environmental investigations at the site.

3.7 Site History Summary

The site is currently owned by the State of New South Wales, and was previously Crown Land. However, there are inconsistencies in the reported historical ownership of the site. The site was reported to have been filled with waste material from the former Oyster Cove gasworks prior to the establishment of bowling greens in the mid to late 1940s. The original fill material was reported to have been subsequently removed from the site. Aerial photographs from the early 1950s onwards, and a 1966 survey shown on a Crown Plan show the presence of two bowling greens and a club house building, generally consistent with observations made during the site inspection. Based on the historical aerial photographs there is the potential that the original club house building was renovated or replaced by the early 1970s.

Although there are some gaps in the site history, it is considered the available information was of sufficient standard to identify if potentially contaminating activities had occurred on the site.

² https://www.northsydney.nsw.gov.au/files/.../H4_WavertonStation_BallsHead.pdf

4.0 ENVIRONMENTAL SETTING

4.1 **Topography and Drainage**

The site is located on a generally level area with an elevation of approximately 20 metres Australian Height Datum (mAHD) (SIX Maps 2019). The surrounding area falls to the south towards Berrys Bay. Surface run off from the site would be expected to drain to Berrys Bay approximately 110 m to the south of the site.

4.2 Surface Water

No permanent surface water features are present on the site. The nearest surface water feature to the site is Berrys Bay located approximately 110 m to the south.

4.3 Geology and Hydrogeology

4.3.1 Geology

A review of the 1:100,000 scale Sydney Geological Series Sheet 9130 (DMR 1983) indicates that the site is located in an area mapped with Hawkesbury Sandstone as the underlying formation. The Hawkesbury Sandstone formation comprise medium to coarse grained quartz sandstone with very minor shale and laminate lenses.

4.3.2 Soils and Landscapes

Based on review of on-line mapping on the eSPADE³ web site residual soil at the site would be part of the Gymea soil landscape. Soils of the Gymea soil landscape are typically shallow to moderately deep *Yellow Earths* and *Earthy Sands* on crests and inside of benches, shallow *Siliceous Sands* on the leading edge of benches, localised *Gleyed Podzolic Soils* and *Yellow Podzolic Soils* on shale lenses, and shallow to moderately deep *Siliceous Sands* and *Leached Sands* along drainage lines. Residual soil at the site would be expected to be highly permeable, have very low soil fertility, have a high erosion hazard and have rock outcrops (Chapman et al 1989).

4.3.3 Lithology

Based on the site inspection (Section 2.3), aerial photographs (Section 3.2) and site history (Section 3.4) fill is present at the site. The fill material is likely to include wastes from the Oyster Cove gasworks. The majority of fill at the site was placed prior to the establishment of the bowling greens in the mid 1940s.

4.3.4 Acid Sulfate Soils

Acid sulfate soils (ASS) planning maps were originally prepared by the NSW Department of Land and Water Conservation to indicate the potential presence of ASS, rather than the severity of ASS at a particular location. The planning maps identify five classes of ASS (Class 1 to Class 5) and identify types of work likely to present an environmental risk for each class of land (ASSMAC 1998). There are no ASS planning sheets associated with North Sydney Local Environment Plan 2013 (the LLEP) (NSC 2013) indicating there is a low risk of ASS at the site.

On-line ASS mapping hosted by the Australian Soil Resource Information System (ASRIS) was reviewed through a Google Earth interface. The ASRIS mapping is based on existing data sets which have been converted to a national classification system (ASRIS 2011). ASRIS shows the site as being in an area which is not identified as having ASS. The lower section of Waverton Park adjacent to Berrys Bay located in an area mapped with of "low probability" for the occurrence of ASS.

³ The data accessible through eSPADE is mainly sourced from the NSW Soil and Land Information System, including soil landscape mapping data.

4.3.5 Hydrogeology

A search of on-line records held by the NSW Department of Primary Industry Office of Water was performed on 6 August 2019. The search indicated there were no licensed groundwater bores located within 500 m of the site. The results of the search is presented in **Appendix D**.

4.3.6 Groundwater Management Zones

The site is not located within a Groundwater Management Zone managed by the NSW government.

4.4 Climate

Meteorological conditions at the site have been inferred from long term records for the Observatory Hill meteorological station, which is located approximately 2.3 km to the south east of the site. The mean annual rainfall would be in the order of 1216 mm, the wettest month being June and the driest month being September. The mean number of days in a year with rain of 25 mm or higher would be in the order of 12 days. The mean maximum temperature would be in the order of 22 °C. The warmest month would be January, with the highest temperature recorded at Observatory Hill of 45.8 °C recorded on 18 January 2013. The mean minimum temperature would be in the order of 14 °C. The coldest month would be July, with the lowest temperature recorded at Observatory Hill of 2.1 °C recorded on 22 June 1932.

5.0 REGULATORY AGENCY RECORDS SEARCHES

As part of the Phase 1 ESA the following published information sources were consulted in respect of the site:

- State databases including:
 - On-line records held by the NSW Environment Protection Authority (EPA), including:
 - The record of notices issued under the Contaminated Land Management Act 1997 (the CLM Act);
 - The public register maintained under Section 308 of the Protection of the Environment Operations Act 1997 (the POEO Act); and
 - The list of sites notified to the EPA under Section 60 of the CLM Act, and
- Council documentation including Section 10.7 (2) and (5) Planning Certificates and planning sheets associated with the North Sydney LEP.

A search of records maintained by SafeWork NSW relating to the storage of hazardous chemicals (formerly referred to as "dangerous goods") was not performed as it was considered there was a low potential for underground storage tanks to be present at the site.

5.1 NSW Environment Protection Authority

A search of on-line records held by the NSW EPA was completed. The search findings are presented below.

5.1.1 CLM Act Notices

The EPA maintains a "Record of Notices" which is a contaminated land public record. The record includes orders made under Part 3 of the *CLM Act*, notices available to the public under Section 58 of the *CLM Act*, site audit statements provided to the EPA under Section 53B of the *CLM Act*, actions taken by the EPA under Sections 25 or 36 of the *Environmentally Hazardous Chemicals Act 1985*, approved voluntary management proposals and copies of information formerly required to be part of the public record.

An on-line search for notified sites in the North Sydney LGA was performed on 6 August 2019. The result of the search, limited to premises within 500 m of the site, is presented in **Table 5** below.

Premises	Approximate distance from site	Comment
SRA Land 95 Bay Road, Waverton	270 m to north west	Three former notices had been issued on the premises. The location was declared a remediation site in 2003 due to the presence of benzo(a)pyrene, total polycyclic aromatic hydrocarbons and lead at concentrations which exceeded investigation levels for standard residential land use. Notices ending the remediation declaration and acknowledging the completion of a voluntary remediation proposal were issued in June 2007.
Oyster Cove AGL 2 King Street, Waverton	360 m to north west	One current notice applies to the premises, with seven former notices revoked between 1996 and 1998. The current notice requires implementation of an environmental management plan for the site and requires written approval from the EPA prior to

Table 5: CLM Notice Search Results

Premises	Approximate distance from site	Comment
		construction of any building, disturbance of the site beyond a depth of 0.5 m, or disturbance to the on-site containment cell.

It is considered that current activities at the premises identified in the above search would have a low potential to impact upon the site. As noted in **Section 3.4** the site was filled with waste material from the former Oyster Cove gasworks prior to the mid 1940s. A copy of the results of the notice search is provided in **Appendix E**.

5.1.2 Notifications under Section 60 of the CLM Act

The NSW EPA maintains a "List of NSW contaminated sites notified to the EPA" under Section 60 of the *CLM Act.* Sites on this list indicate that the notifiers consider that the sites are contaminated and warrant reporting to the NSW EPA. The contamination at the site may or may not be significant enough to warrant regulation by the EPA and the EPA reviews relevant site information before making a determination as to whether or not the site warrants regulation. An on-line search for notified sites in Waverton and the surrounding suburbs of North Sydney, McMahons Point and Wollstonecraft was performed on 6th August 2019. The result of the search, limited to premises within 500 m of the site, is presented in **Table 6** below.

Premises	Approximate distance from site	EPA management status
SRA Land 95 Bay Road, Waverton	270 m to north west	Contamination formerly regulated under the CLM Act.
Oyster Cove AGL 2 King Street, Waverton	360 m to north west	Ongoing maintenance required to manage residual contamination (<i>CLM Act</i>).
Berry's Bay Woodley's Marina 1 Balls Head Road, Waverton	500 m to south	Contamination formerly regulated under the POEO Act.

Table 6: Section 60 Notification Search Results

Two of the premises notified under Section 60 of the *CLM Act* were identified in the Record of Notice search describe in **Section 5.1.1**. It is considered that current activities at the premises identified in the above search would have a low potential to impact upon the site. A copy of the results of the notice search is provided in **Appendix E**.

5.1.3 EPLs under the POEO Act

The NSW EPA maintains a public register of premises subject to an Environment Protection Licence (EPL) under the *POEO Act*.

An on-line search for premises in Waverton and the surrounding suburbs of North Sydney, McMahons Point and Wollstonecraft was performed on 6th and 7th August 2019. The result of the search, limited to premises within 500 m of the site, is presented in below.

Table 7: EPL Search Results

Premises	Approximate distance from site	Activity type	Licence status
Noakes Boatyard 6 John Street, McMahons Point EPL 10893	300 m to south east	Boat construction/ maintenance (general)	Issued
Woodley (Berrys Bay) Pty Limited 1 Balls Head Road, Waverton EPL 6322	500 m to south	Marinas and boat repairs	Surrendered

It is considered that the premises identified in the above search would have a low potential to impact upon the site. A copy of the results of the notice search is provided in **Appendix E**.

5.1.4 Penalty Notices Issued under the POEO Act

The NSW EPA maintains a public register of Penalty Notices under the POEO Act.

A search of the Penalty Notices register issued by the NSW EPA under the *POEO Act* was performed on 7th August 2019 for the North Sydney LGA. One Penalty Notice was issued on a shipyard located approximately 300 m to the south east of the site. A copy of the results of the penalty notice search is provided in **Appendix E**.

5.2 Local Council

Section 10.7 (2) & (5) planning certificates for the site, issued under Section 10.7 of the *Environmental and Planning Assessment Act 1979*, were obtained from North Sydney Council. The planning certificates, issued on 7 August 2019, included the following information relating to potential contamination issues:

- The site is zoned RE1 Public Recreation;
- Council is not aware that the land is not affected by any matter listed in Clause 59(2) of the Contaminated Land Management Act 1997, i.e. the land is not significantly contaminated, is not the subject to a management order, is not the subject of an approved voluntary management proposal, is not subject to an ongoing maintenance order and Council has not received a Site Audit Statement for the site;
- The land is not affected by a policy adopted by Council which would restrict development because of the likelihood of land slip, bush fire, flooding, tidal inundation or acid sulfate soils or any other risk; and
- The site does not contain a heritage item and is not located within a heritage conservation area.

The planning certificate reported that the site owner, as recorded by Council, was The North Sydney Club Ltd. This is inconstant with the results of the title search documented in **Section 3.3**.

A copy of the Section 10.7 (2) & (5) planning certificates for the site is presented in Appendix F.

5.3 Department of Defence

A search of the Department of Defence unexploded ordnance (UXO) mapping application was performed on 7 August 2019. The search indicated that the site was not identified as potentially impacted by UXO. A copy of the search result is presented in **Appendix G**.

6.0 PRELIMINARY INTRUSIVE INVESTIGATION PROGRAM

Five boreholes, identified as BH01 to BH05, were drilled on 2 September 2019 to obtain preliminary information to assess the potential for contamination at the site. In addition, a surface sample was collected from soil in the vicinity of oil staining on the building fabric and a fragment of suspected asbestos cement sheet was collected for analysis. The location of the boreholes and surface sampling locations are shown on **Figure 1**. Although the number of investigation locations does not comply with the minimum number of locations recommended in the *Sampling Design Guidelines* (EPA 1995), the investigation program is considered appropriate to identify gross contamination in near surface soils on the site which may inform Council's decision to take out a lease on the site.

Fill material comprising silty sand, ballast, sandstone and clinker was identified at depths of up to 0.95 m below ground level (mbgl). Hand auger refusal was encountered at depths ranging between 0.7 mbgl and 0.95 mbgl in sandstone fill. No chemical type odours were observed during the sampling. The maximum headspace PID reading obtained of 1.9 parts per million (ppm) indicated a low potential for the presence of volatile organic compounds at the investigation locations. Clinker (i.e. residue from the combustion of coal) was observed in fill at locations BH01, BH03, BH04 and BH05. Water was observed entering BH05 at a depth of approximately 0.85 mbgl. Copies of borelogs are presented in **Appendix H**. Sample Trans01, not identified on the borelogs, was collected from surface fill adjacent to an oil stained door entrance. The fill was described as brown silty sand, with low plasticity silt. Sample ASB01 was a fragment of fibre cement sheet collected from the ground surface in the vicinity of the location of sample Trans01.

Selected soil samples obtained during the intrusive investigation were submitted for chemical analysis to obtain preliminary information on the likely type and concentrations of potential contaminants of concern (PCoC). The samples by an environmental scientist, experienced in the collection of environmental samples, using a hand auger.

The soil samples were submitted to Australian Laboratory Services (LS) and Envirolab Services (ELS), both of which are National Association of Testing Authorities, Australia (NATA) accredited for the analyses performed⁴.

The samples were analysed for PCoC comprising:

- Total recoverable hydrocarbons (TRH);
- Benzene, toluene, ethyl benzene, xylene and naphthalene (BTEXN);
- Polycyclic aromatic hydrocarbons (PAH);
- Speciated phenols;
- Organochlorine pesticides (OCP);
- Organophosphorous pesticides (OPP);
- Polychlorinated biphenyls (PCB);
- Semi-volatile organic compounds (SVOC);
- Free cyanide;
- Ammonia;

⁴ ALS is not NATA accredited for determination of asbestos weights and percentages to the reporting limits required by NEPC 2013.

- Metals (arsenic, cadmium, copper, chromium, lead, mercury, nickel and zinc); and
- Asbestos.

The PCoC were based on the former use of the site as a lawn bowling club, the historical filling of the site with waste material from the Oyster Cove gasworks site, and typical contaminants found on urban sites. In particular metals, ammonia, cyanide, PAH and SVOC were selected as they are commonly associated with gasworks waste and metals, OCP and OPP were selected as they are associated with fungicides and pesticides applied to greens.

Laboratory documentation and chain of custody records are presented in **Appendix I**, summary tables are presented in **Appendix J** and data validation records are presented in **Appendix K**. The data validation determined that the laboratory analytical results were suitable for environmental interpretive use

The soil analytical results, presented in **Table J1** in **Appendix J**, were compared to health investigation and screening levels for public open space (HIL C and HSL C) documented in the *National Environment Protection (Assessment of Site Contamination) Measure 1999* (NEPC 2013) (the NEPM) for the assumed recreational open space land use. The results were also compared to the ecological investigation and screening levels (EIL C and ESL C) assuming there would be accessible soil under the proposed land use. As the scope of the assessment excluded the collection and analysis of samples to estimate site specific EILs for metals, the most conservative added contaminant limit (ACL) for the respective metals was adopted as the EIL.

Asbestos and benzo(a)pyrene (BaP, a PAH compound) were reported at concentrations above the open space screening levels in surface soil at the entrance to the sub-floor area at the rear of the club house building (sample Trans01). The reported asbestos (as >7mm ACM) concentration of 0.13 % exceeded the HSL of 0.02 %. The reported BaP concentration of 2.2 mg/kg and BaP TEQ⁵ concentration of 3.4 mg/kg exceeded the ESL and HSL of 0.7 mg/kg and 3 mg/kg respectively.

The soil analysis results were otherwise below the screening levels adopted in the NEPM for public open space land use. Organic analytes (other PAH compounds in in sample Trans01) were generally not detected with the exception of low levels of organochlorine pesticides in near-surface soil at location and F3 and F4 TRH fractions in samples collected from BH01 and Trans01.

A sample of suspected asbestos cement sheet collected from the ground surface near the entrance to the sub-floor area at the rear of the club house building (sample ASB01) was analysed for asbestos presence or absence. The fragment of cement sheet was shown to contain chrysotile asbestos.

⁵ A measure of carcinogenic PAH compounds.

7.0 SUMMARY OF ASSESSMENT

7.1 Summary

Based on a review of desktop information and the limited soil sampling, Golder has undertaken a Preliminary Environmental Investigation of the former Waverton Bowling Club site.

In summary:

- The site is located on Lot 1 in DP 752067, has an area of approximately 5,120 m², and is zoned RE1 Public Recreation;
- The site is owned by the State of New South Wales;
- The site is located in an area of the Gymea soil landscape. Residual soils at the site, if present, would be highly permeable, have very low soil fertility and have a high erosion hazard;
- The site is located in an area which is not identified as having ASS (ASRIS 2011);
- The site has been used for recreational purposes as a bowling club since the 1940s until the Waverton Bowling Club entered liquidation in early 2019;
- The site is not the subject of a Notice issued under the CLM Act. The nearest premises to the site subject to current or former Notices are more than 250 m from the site and are considered to have a low potential to impact upon the site;
- The site has not been subject to an EPL under the POEO Act. The nearest premises subject to an EPL, or formerly subject to an EPL, is located some 300 m to the south east, and is considered to have a low potential to impact upon the site;
- The site has not been notified under Section 60 of the CLM Act. The nearest premises notified to the EPA is located some 270 m to the north west, and is considered to have a low potential to impact upon the site;
- Identified land use activities with the potential to contaminate the site include importation of fill, storage and application of chemicals to the bowling greens, potential demolition or renovation of the bowling club building, application of termiticides below the building, and the presence of septic tanks;
- A limited sampling and analysis program was performed to identify gross contamination in near surface soils on the site. The number of investigation locations did not comply with the minimum number of locations recommended in the Sampling Design Guidelines (EPA 1995) and did not include an assessment of groundwater at the site;
- The results of the soil sampling and analysis program were generally below levels considered suitable for recreational land use. However, exceedances of the screening levels for asbestos and BaP were reported in one surface soil sample collected from adjacent to the southern side of the building; and
- Fragments of potential asbestos cement sheet were observed on the ground surface on the southern side of the building. Laboratory analysis of one fragment confirmed the material contained chrysotile asbestos.

7.2 Potential Contamination Risk

The results of the desktop site history review, site inspection and limited opportunistic sampling and analysis was used to assess the potential for past and current activities on the site to have resulted in contamination which may pose a risk to the proposed recreational use of the site.

The following contamination risks have been identified at this preliminary stage:

- The importation of uncontrolled fill including material from the Oyster Cove gasworks;
- The presence of asbestos cement fragments on the ground surface on the southern side of the building, and associated asbestos contamination of surface soils in the area;
- Localised PAH impact in surface soil at a sample location on the southern side of the building;
- The potential for application of termiticides below the building and of fungicides, pesticides and herbicides to the bowling greens;
- The potential for spillage or leakage of chemical containers in the storage areas; and
- The presence of pathogens in site soil from potential leakage from the septic tanks on the site.

8.0 CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) has been developed following the desktop information and the limited soil sampling during. The CSM aims to provide an understanding of the potential for exposure to site contaminants of potential concern and associated impacts on the proposed recreational land use of the site.

Identified historical and current land use activities that may have contributed to potential contamination sources at the site include:

- Historical importation of fill material, including importation of potentially impacted fill from the Oyster Cove gasworks;
- Potential application of lawn maintenance chemicals to the bowling greens;
- Potential application of termiticides to site buildings; and
- Storage of lawn maintenance chemicals.

Transportation mechanisms are considered to include:

- Direct release to soil;
- Stormwater transportation of soil particles;
- Entrainment of contaminants into wind-blown dust;
- Migration of contaminants to surface or groundwater.

Exposure pathways are considered to include:

- Direct contact with soil/fill;
- Ingestion of soils or soil derived dust;
- Inhalation of soil derived dust;
- Inhalation of fibres;
- Direct contact with impacted ponded surface water;
- Inhalation of aerosols of impacted ponded surface water; and
- Incidental ingestion of impacted ponded surface water.

Potential receptors based on the proposed recreational land use were identified as:

- Future recreational users;
- Future maintenance workers; and
- On and off-site flora and fauna.

The potential contaminant sources and migration or exposure pathways identified have the potential to form pollutant linkages which may pose a risk to a receptor. These can be summarised as a preliminary CSM for the proposed recreational use of the site as presented in **Table 8**.

Page 33

Table 8: Preliminary Conceptual Site Model

Primary Sources Sec	econdary Sources	Transport Mechanisms	Exposure Pathways	Receptors
 Historical importation of uncontrolled fill. Potential application of chemicals to the bowling greens. Potential application of termiticides to site buildings. Storage of chemicals. 	Potentially impacted soil	 Direct release to soil Stormwater transportation of soil particles. Entrainment of contaminants into wind- blown dust. Leaching of contaminants to surface water / groundwater 	 Direct contact with soil/fill. Incidental ingestion of soil/fill. Inhalation of soil/fill derived dust. Inhalation of fibres. Contact with impacted ponded surface water. Inhalation of aerosols of impacted ponded surface water. Incidental ingestion of impacted surface water or groundwater. 	 Future recreational users of the site. Future maintenance workers. On and off-site flora and fauna.

9.0 CONCLUSIONS

Based on the Preliminary Environmental Investigation and limited soil investigation performed at the former Waverton Bowling Club site it is considered that the overall potential for widespread significant soil contamination in near-surface material to exist at the site is low. The concentrations of potential contaminants of concern were generally below levels considered suitable for recreational land use. However, the following areas of the site are considered to require management or further assessment prior to use of the site for publicly accessible recreational purposes:

- Surface soil along the southern side of the clubhouse where asbestos cement fragments have been identified and an exceedance of the adopted criterion for asbestos in soil was reported;
- The locations at the southern side of the clubhouse where benzo(a)pyrene and asbestos were detected at concentrations above the adopted criteria;
- Soil with the potential to be impacted by pathogens in the vicinity of the septic tanks;
- Sub-building soil which has the potential to be impacted by e.g. application of termiticides or leakage from chemicals used to maintain the greens. The sub-building soil is currently not accessible, and would not be expected to pose a risk to recreational users of the site until exposed by e.g. building demolition; and
- Deeper fill material may be impacted by e.g. gasworks wastes. Whilst this does not appear to preclude the non-intrusive recreational use of the site, these materials would require further assessment if redevelopment involving earthworks is proposed.

Potential management strategies to enable use of the site for recreational purposes in its current form include:

- Performing limited remediation works along the southern side of the clubhouse to remove the asbestos and PAH impacted soil from site;
- Covering the surface soil at the southern side of the clubhouse building to limit the potential for exposure of users of the site to the contaminants; and
- Implementation of a site management pan.

Equally, these measures could be achieved through targeted works during a broader site redevelopment strategy.

10.0 LIMITATIONS

Your attention is drawn to the document titled - "Important Information Relating to this Report", which is included in **Appendix L** of this report. The statements presented in that document are intended to inform a reader of the report about its proper use. There are important limitations as to who can use the report and how it can be used. It is important that a reader of the report understands and has realistic expectations about those matters. The Important Information document does not alter the obligations Golder Associates has under the contract between it and its client.

11.0 REFERENCES

- ASRIS 2011 ASRIS Australian Soil Resource Information System. http://www.asris.csiro.au. Accessed August 2019.
- DMR 1993 *Sydney 1:100 000 Geological Sheet 9130 (Edition 1)*, Geological Survey of New South Wales, Department of Mineral Resources, 1983.
- EPA 1995 Sampling Design Guidelines, NSW Environment Protection Authority, 1995.
- NEPC 2013 National Environment Protection (Assessment of Site Contamination) Measure 1999, National Environment Protection Council, 2013.
- NSC 2013 North Sydney Local Environment Plan 2013, North Sydney Council, 2013 (as amended).
- NSHS 1994 Walk 4 Waverton Station to Balls Head, North Shore Historical Society, 1994.

Signature Page

Golder Associates Pty Ltd

Shane Doyle Principal Environmental Scientist Gavan Butterfield Associate

SPD/GB/spd

A.B.N. 64 006 107 857

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/112349/project files/6 deliverables/19126714-001-r-reva phase 1.docx

ATTACHMENT TO ITEM 24 - 28/10/19


|--|

LEGEND

- Site Boundary
- ♦ Asbestos Sample
- A Hand Auger
- Grab Sample

Site features

- (1) Clubhouse
- 2 Eastern Green
- 3 Western Green
- (4) Eastern Storage Area
- 5 Western Storage Area
- 6 Septic Tanks

REFERENCE(S)

CLIEN

NORTH SYDNEY COUNCIL

PROJEC PRELIMINARY SITE INVESTIGATION FORMER WAVERTON BOWLING CLUB SITE WOOLCOTT ST, WAVERTON

SITE LAYOUT, FEATURES AND INVESTIGATION LOCATIONS

TITI

CONSULTANT 24-09-2019 DD-MM-YYYY DESIGNED EAA GOLDER REVIEWED EAA SD APPROVED SD PROJECT NO. 19126714 FIGURE REV. 0 CONTROL 001-R 1

APPENDIX A

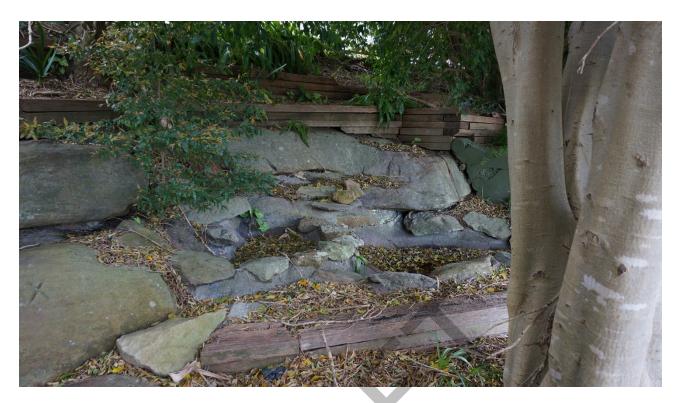
Site Inspection Photographs

ら GOLDER

1. View to south east across the eastern bowls green. Based on the presence of weeds on the green indicate the green has not been used for lawn bowls in the recent past.

2. Retaining wall on the northern side of the eastern green. The metal and render lining of the green gutters is visible on the right side of the image.

3. View to west along the southern side of the eastern green. A retaining wall is visible on the left side of the image


4. View to north west across the western green with Waverton Park and Woolcott Street in the background.

5. Concrete cylinders used as part of a retaining structure between Woolcott Street and the western green.

6. View to north towards Woolcott Street across the open area between the two greens.

7. Sandstone outcrop near the northern side of the site between the two greens.

8. View to south from Woolcott Street to the club house building. Two storage areas were present on the eastern side of the building, and one storage area was present on the western side of the building (not visible in this photograph).

9. View to north east across Waverton Park to the southern side of the club house building.

10. View of the rear of the club house building showing the bricked-in sub-floor area.

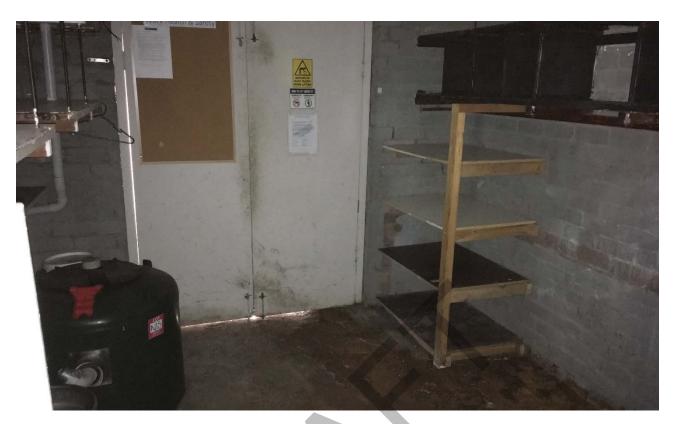
11. Oil staining below a door near the eastern end of the club house building. No access to area was available during the initial site inspection. Soil sample Trans01 was collected from the surface soil adjacent to the door opening.

12. View across sub-floor area to the west. The area had been used for storage purposes. High voltage equipment was not present in the area contrary to the high voltage warning sign on the access door. Sandstone rubble fill, visible on the right of the image, appeared to extend below the building.

13. Fragments of suspected asbestos cement sheet on the ground surface on the southern side of the building (pen for scale).

14. Close up of suspected asbestos cement sheet fragment. Laboratory analysis confirmed the presence of chrysotile asbestos in the cement sheet.

15. Septic tank located at the south east corner of the building. A second septic tank is present is located in this area but is not visible in this photograph.


16. View from above of two septic tanks at the south east corner of the building.

17. Rubble located adjacent to the southern boundary of the site.

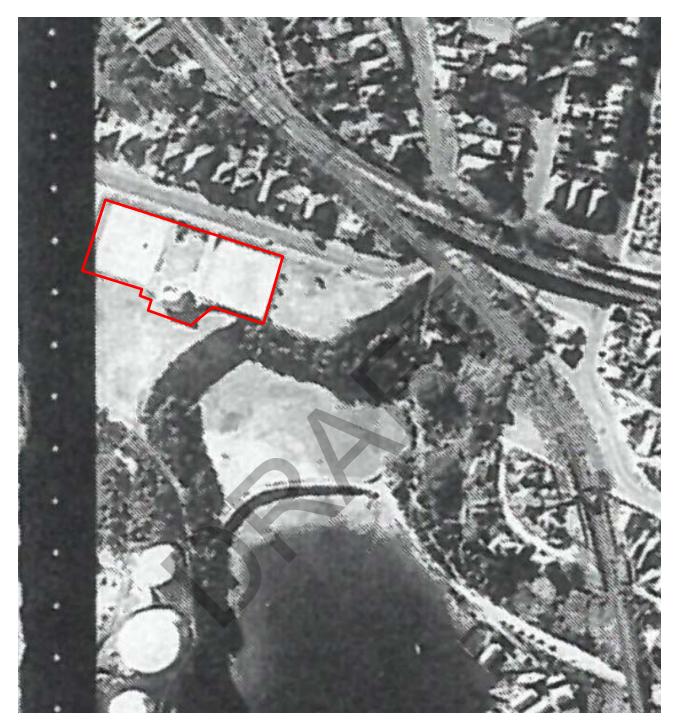
18. View to interior of the easternmost storeroom. Note the potential oil staining on the concrete floor and on the brick wall.

19. View of interior of storeroom accessed from inside the building. The area housed wastewater treatment equipment.

20. View of interior of western storeroom. Minor staining of the concrete floor slab was observed.

21. View of the interior of the club house building. A bowls club honour board observed during the inspection indicated the club was founded in 1947.

APPENDIX B


Aerial Photographs

ら GOLDER

1943 (source: SIX Maps)

2009 (source: Nearmap)

2015 (source: Nearmap)

2019 (source: Nearmap)

APPENDIX C

Land Titles Search Results

ら GOLDER

ATTACHMENT TO ITEM 24 - 28/10/19

Title Search

V.I. Ralph & Co City Legal Services

NEW SOUTH WALES LAND REGISTRY SERVICES - TITLE SEARCH

FOLIO: 1205/752067

SEARCH DATE	TIME	EDITION NO	DATE
7/8/2019	2:11 PM	-	-

CERTIFICATE OF TITLE HAS NOT ISSUED

LAND

LOT 1205 IN DEPOSITED PLAN 752067 AT WAVERTON LOCAL GOVERNMENT AREA NORTH SYDNEY PARISH OF WILLOUGHBY COUNTY OF CUMBERLAND (FORMERLY KNOWN AS PORTION 1205) TITLE DIAGRAM CROWN PLAN 9325.2030

FIRST SCHEDULE

THE STATE OF NEW SOUTH WALES

(CA150575)

SECOND SCHEDULE (2 NOTIFICATIONS)

- * 1 THE LAND IS A RESERVE WITHIN THE MEANING OF PART 5 OF THE CROWN LANDS ACT 1989 AND THERE ARE RESTRICTIONS ON TRANSFER AND OTHER DEALINGS IN THE LAND UNDER THAT ACT, WHICH MAY REQUIRE CONSENT OF THE MINISTER.
- * 2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Copyright © Office of the Registrar-General 2019

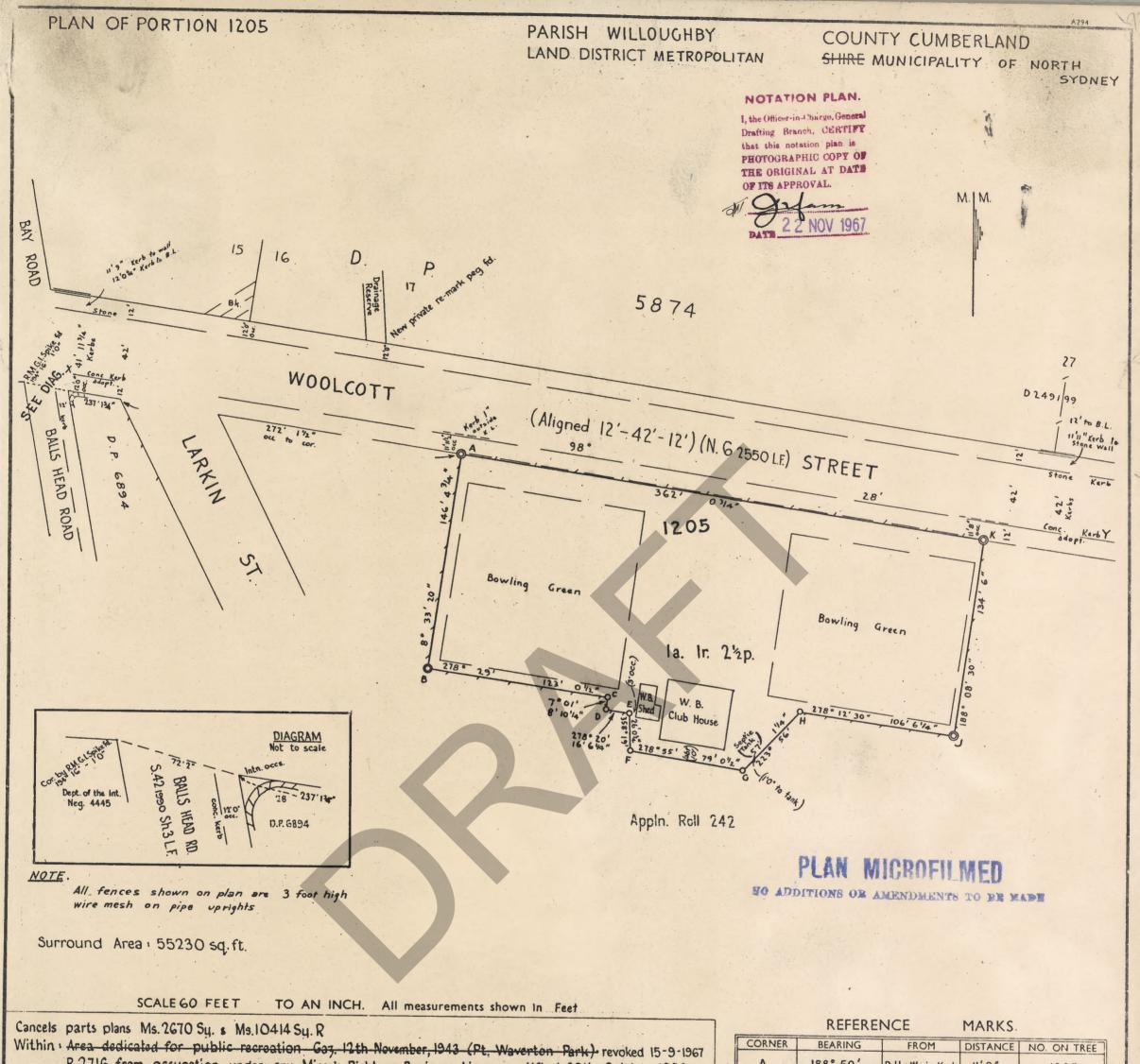
Received: 07/08/2019 14:11:34

New South Wales Land Registry > Prior Title Search

NSW: Prior Title Search - 1205/752067

Prior Title

CROWN LAND


This information is provided as a searching aid only. The Registrar General does not guarantee the information provided.

Copyright © Office of the Registrar-General 2019

Received: 07/08/2019 14:14:28

Req:R764570 /Doc:CP 09325-2030 P /Rev:29-Nov-2012 HACHMEN JAPA 24P28 10/19 - Aug-2019 14:24 /Seq:1 of 1 © Office of the Registrar-General /Src:INFOTRACK /Ref:P021676

R. 2716 from occupation under any Miner's Right or Business License, notified 28th October, 1960

NOTATION PLAN

CAT. NO. C.9325 2030

- 1					
	CORNER	BEARING	FROM	DISTANCE	NO. ON TREE
	A	188° 50'	D.H.e.W. in Kerb		1205

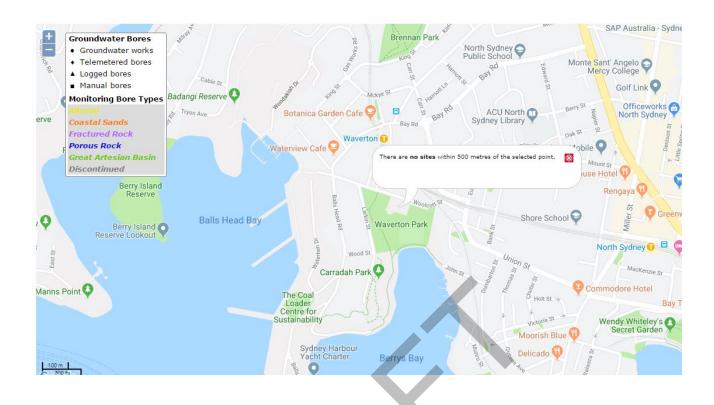
Por. 1205: Sp. L. 61-110 Trustees of Waverton Bowling and Recreation Club Title limited to the surface and to a depth of 50 feet below the surface

PAPER NO. LB GI-2069 TEN. 65-2256

NOTATION PLAN

			DH W Come	941 471	1205		
	A	in Cut on	Iron Post				
	B	98° 40'	D. HAW. in Conc.	24' 43/4"	1205		
	B	is Cut on	Iron Post	64 4 14	1205		
	č						
	D		Iron Post				
	E E		Iron Post				
	E	in Cut on	Iron Post	4			
		1 Peg	· · · · · · · · · · · · · · · · · · ·		1205		
	G	Th Peg	100 S	-	1205		
	H I	in Cut on	Iron Post				
	1	277° 24'	G.I.P.	4' 0"	1205		
	ĸ	188" 46'	D.H.A.W. in Kerb	11' 9"	1205		
	<u>K</u>	Iron Post	on corner		1203		
			OM XY				
	FIELD	BOOK 4400	PAGES 30.				
State and the state							
	1. P:	avid Johnson		of Syd	TRY		
	o Survey	or registered under	the Surveyors A	ct. 1929-1946	hereby		
	certify th	nat the survey repr	esented in this p	lan is occura	te and has		
	been moo	by me					
		winder my imme	diste supervision	- 15 G	dance with		
	the Surve	y Practice Regula	tions, 1933, ond 1	the special re	aquirements		
	of the De	portment of Lands	and wos gomplei	ed on lst.	Aug 1966		
		bla.	:1/1/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Signature Alle place							
Surveyor registered under the Surveyors Act, 1929-1946.							
	CHECKED & CHARTED C. Margan 28th salter box 1967						
	PLAN APPROVED OK they						
	**	Authorise	a Officer	19.10	2: 1967		
张切之也.							

This space for office use only.


APPENDIX D

Groundwater Bore Search Results

ATTACHMENT TO ITEM 24 - 28/10/19

September 2019

19126714-001-R-RevA

ら GOLDER

APPENDIX E

EPA Register Search Results

ら GOLDER

CLM ACT RECORD OF NOTICES SEARCH RESULTS

Search results

Your search for: LGA: North Sydney Council		Matched 17 notice Search Again	s relating to 5 sites. Refine Search	
Suburb	Address	Site Name	Notices related to this site	
CAMMERAY	Brothers AVENUE	Tunks Park	3 former	
NORTH SYDNEY	High STREET	HMAS Platypus Neutral Bay	1 current	
NORTH SYDNEY	Adjacent to HMAS Platypus, 118 High STREET	Neutral Bay Sediments	2 former	
WAVERTON	2 King STREET	Oyster Cove AGL	1 current and 7 former	
WAVERTON	95 Bay ROAD	SRA Land	3 former	

Page 1 of 1

6 August 2019

NOTIFICATIONS UNDER SECTION 60 OF THE CLM ACT SEARCH RESULTS

Suburb	J SiteName 💌	Address 💌	ContaminationActivityType	ManagementClass 💌	Latitude 💌	Longitude 💌
WAVERTON	SRA Land	95 Bay ROAD	Unclassified	Contamination formerly regulated under the CLM Act	-33.83716728	151.1969497
WAVERTON	Berry's Bay Woodley's Marina	1 Balls Head DRIVE	Other Industry	Contamination formerly regulated under the POEO Act	-33.84441851	151.1947433
WAVERTON	Oyster Cove AGL	2 King STREET	Gasworks	Ongoing maintenance required to manage residual contamination (CLM Act)	-33.83637995	151.193541
NORTH SYDNEY	Iora Complex	1 Kiara PLACE	Gasworks	Regulation under CLM Act not required	-33.843145	151.2161142
NORTH SYDNEY	Neutral Bay Sediments	Adjacent to HMAS Platypus, 118 High STREET	Gasworks	Contamination formerly regulated under the CLM Act	-33.842724	151.2174523
NORTH SYDNEY	HMAS Platypus Neutral Bay	High STREET	Gasworks	Contamination currently regulated under CLM Act	-33.84325935	151.2170347

POEO ACT ENVIRONMENT PROTECTION LICENCE SEARCH RESULTS

Your search for: POEO Licences with the following criteria

Suburb - waverton

returned 1 results

Export to ex	<u>cel</u> 1 o	1 Pages			Search Again
Number	<u>Name</u>	<u>Location</u>	Туре	<u>Status</u>	Issued date
<u>6322</u>	WOODLEYS (BERRYS BAY) PTY LIMITED	1 BALLS HEAD ROAD, WAVERTON, NSW 2060	POEO licence	Surrender	ed03 Apr 2000
					06 August 2019
Your search	n for: POEO Licences with the follow	ing criteria			
	Suburb - mcmahons point				
returned 1 r	esults				
Export to ex	ccel 1 of	1 Pages			Search Again
Number	Name	<u>Location</u>	Туре	<u>Status</u>	Issued date
<u>10893</u>	NOAKES BOAT & SHIPYARDS PTY		POEO licence	Issued	14 Feb 2001
	LIMITED	POINT, NSW 2060			07 August 2019
					07 August 2019
Your search	for: POEO Licences with the followi	ng criteria			
	Suburb - North Sydney				
returned 4 re	esults				
Export to ex	<u>cel</u> 1.0	f 1 Pages			Search Again
Number	Name	Location	<u>Түре</u>	<u>Status</u>	Issued date
<u>12790</u>	COGENT ENERGY PTY LTD	101-103 Miller Street, NORTH SYDNEY, NSW 2060	POEO licence	Issued	08 Jul 2008
<u>6201</u>	DARKROW PTY LTD	6 HOLT STREET, NORTH SYDNEY, NSW 2060	POEO licence	Surrende	red19 Jan 2000
<u>6600</u>	ST VINCENTS & MATER HEALTH SYDNEY LIMITED	25 - 35 ROCKLANDS ROAD, NORTH SYDNEY, NSW 2060	POEO licence	No longe force	in 19 May 2000
<u>4062</u>	SYDNEY HARBOUR TUNNEL COMPANY LTD	130 MOUNT STREET, NORTH SYDNEY, NSW 2060	POEO licence	Issued	25 Jul 2000

06 August 2019

Search results

Your search for: POEO Licences with the following criteria

Suburb - Wollstonecraft

returned 0 results

Search Again

E2

PENALTY NOTICE SEARCH RESULTS

Notice summary

	Search Again	Return to Previous Page
: 3085780271		
NOAKES BOAT & SHIPYARDS PTY LIMITED		
16 Aug 2016		
	1)	
Pollute waters - other officer - Corporation		
Name	Licen	ice status
NOAKES BOAT & SHIPYARDS PTY LIMITED	Issue	d
	NOAKES BOAT & SHIPYARDS PTY LIMITED NOAKES BOATYARD 6 JOHN STREET, MCMAHONS POINT, NSW, 2060 NORTH SYDNEY Sydney Coast & Georges River 19 Sep 2016 Penalty Notice 16 Aug 2016 Protection of the Environment Operations Act 1997 - 120(Pollute waters - other officer - Corporation	: 3085780271 NOAKES BOAT & SHIPYARDS PTY LIMITED NOAKES BOATYARD 6 JOHN STREET, MCMAHONS POINT, NSW, 2060 NORTH SYDNEY Sydney Coast & Georges River 19 Sep 2016 Penalty Notice 16 Aug 2016 Protection of the Environment Operations Act 1997 - 120(1) Pollute waters - other officer - Corporation

25 September NSW

19126714-001-R-RevA

APPENDIX F

Section 10.7 Planning Certificate

N	0	RT	н	A S	ATTA Y	CHN D	/IENT N	TO IT EY			19	c	0	υI	1	с	Page 74 I L	
address all correspondence		al Ma ox 12	nager	North	n Syd	ney (Cound					fac	ema terne	e (0 il co et wy	2)9 unci vw.n	936 il@n nortl	8100 8177 orthsydney.1 hsydney.nsw 60 317	
Golde PO B	e Doyler Asso ox 130 s Nest SEC	ociate 2 1585 PLA CTION	ANNIN	NG CI ENV	IRON	IME	NTAL	JNDER - PLAN 1979	-	3	-	Cert. age	No.: No.:				73897/0 1 of	—
Parcel No:	17354											eipt	Date: No.: REF:				07/08/201 231890 1912671	0
	scriptic cott St 1205 E	reet V		-	N NS	SW	2060)wne	r (as re The N PO B NOR	North	Syd 25	ney (Club		9		

The Title information shown on this Certificate has been obtained from the Land and Property Information NSW, therefore Council cannot guarantee accuracy.

The information required to be disclosed in this planning certificate is that prescribed by Schedule 4 of the Environmental Planning and Assessment Regulation 2000. If no response is provided in this planning certificate for an item listed in Schedule 4, that matter has been considered and determined as not applying to the land to which this certificate relates.

AS AT THE DATE OF THE CERTIFICATE THE FOLLOWING MATTERS APPLY TO THE ABOVE MENTIONED LAND.

PLANNING INSTRUMENT:

North Sydney Local Environmental Plan 2013, published on the NSW legislation website on 2 August 2013 and came into force on 13 September 2013, as amended.

Zone: RE1 – Public Recreation

Permitted without consent

Environmental protection works

Permitted with consent

Aquaculture; Building identification signs; Business identification signs; Community facilities; Environmental facilities; Information and educational facilities; Kiosks; Recreation areas; Recreational facilities (outdoor); Restaurants or cafes; Roads; Water recreation structures

Prohibited

Any development, other than a development specified above, is prohibited in the zone

Exempt Development

Development for the purposes set out in clause 3.1 of *North Sydney Local Environmental Plan 2013* is exempt development, which may be carried out within the zone without the need for development consent.

Complying Development

Ν	0	R	т	н	A S	TTA(Y	CHN D	NENT N	ТО Е	ITE Y		H	19	с	0	U	Ν	с	Page I L	975		_
address	200	Mill	ler S	treet	North	ı Syd	ney	NSW	/ 20	60		UNC	\mathbf{S}				. ,		5 8100			
all correspondence	Gen	eral	Mar	nager	North	Sydr	ney (Cound	cil					fac	simi	le	(02)	9930	6 8177			
	PO	Box	12]	Nortl	n Sydne	ey NS	SW 2	2059							emo	il	coun	cil@r	northsy	dney.nsw	.gov.au	ι
	DXI	058	7											in	tern	et	www	nort	thsydne	y.nsw.gov	.au	
															AB	Ν	32 3	53 2	60 317			
Dovelopmen	st for	tha	-		o oot d				<u>.</u>	.f /	North	Suda		0001	En	iro	mor	tol	Dlan 2	012 10		

Development for the purposes set out in clause 3.2 of *North Sydney Local Environmental Plan 2013* is complying development, which may be carried out within the zone without the need for development consent, provided that a complying development certificate is obtained.

Development Consent MAY BE REQUIRED for the DEMOLITION of all or part of any building on the subject land under North Sydney Local Environmental Plan 2013. Refer to SEPP (Exempt and Complying Development Codes) 2008 and Clause 3.1 under North Sydney Local Environmental Plan 2013.

DRAFT PLANNING INSTRUMENTS:

Planning Proposal 7/15 to amend North Sydney Local Environmental Plan 2013 – 575-583 Pacific Highway, St Leonards

This Planning Proposal seeks to amend the planning controls to *North Sydney Local Environmental Plan* 2013 for land at 575-583 Pacific Highway, St Leonards. In particular, the proposed amendments include:

- increasing the maximum building height from 26m to 56m; and
- applying a whole of site maximum Floor Space Ratio of 7:1.

Accompanying the Planning Proposal is a draft Voluntary Planning Agreement (VPA) that proposes a monetary contribution of \$4,095,803 to assist Council in providing public open space in the area as envisaged by the *St Leonards/Crows Nest Planning Study for Precinct 1*.

The Planning Proposal and VPA will be on public exhibition from Thursday 8 March 2018 to Thursday 12 April 2018.

Planning Proposal 6/16 to amend North Sydney Local Environmental Plan 2013 – 100 Christie Street, St Leonards

This Planning Proposal seeks to amend the planning controls to *North Sydney Local Environmental Plan 2013* for land at 100 Christie Street, St Leonards. In particular, the proposed amendments include:

- increasing the maximum building height from 49m to 132m;
- introducing a maximum floor space ratio (FSR) of 18:1;
- introducing a minimum non-residential FSR of 4.25:1;
- adding a clause to Schedule 1 Additional Permitted Uses such that "shop top housing" is permissible with consent on the subject site;
- adding a clause to Part 6 *Local Provisions* such that basement parking may be constructed under 50% of the lot containing Christie Street Reserve; and
- amending Clause 4.6 to exclude the use of Clause 4.6 to vary the development standard proposed above under Part 6.

Accompanying the Planning Proposal is a draft Voluntary Planning Agreement (VPA) which seeks to provide Council with a material public benefit in the form of two floors of co-working commercial office space within the building podium, embellishment and dedication of the Christie Street Reserve to Council in perpetuity, upgrade of Chandos Street and Sergeants Lane and a monetary contribution of \$100,000 to Council for the purpose of a bike hub in the area.

The Planning Proposal and VPA will be on public exhibition from Thursday 8 November 2018 to Thursday 6 December 2018.

Planning Proposal 1/18 to amend North Sydney Local Environmental Plan 2013 – 23 – 35 Atchison Street, St Leonards

Ν	0	R	T	н		АТТ 5	ΓΑΟ Υ	D	NENT N	TC E) ITE Y	EM			19	с	0	U	N	с	Pa I	ge 76 L			
address	200	Mill	er S	treet	Nor	th S	Sydr	ney	NSW	20	060		COL	NCI			pho		. ,		6 81(
all correspondence	Gen	eral	Mar	nager	Nort	h S	ydn	ey (Cound	il						fac	simi	le	(02)	993	6 817	7			
	PO	Box	12 1	North	n Sydi	ney	NS	W 2	2059								emo	ail	coun	cil@	north	sydne	y.nsw.g	gov.a	u
	DX.	1058	7													in	tern	et	www	.nor	thsyd	ney.ns	sw.gov.	.au	
																	AB	N	32 3	532	60 3	17			

The Planning Proposal seeks to amend *North Sydney Local Environmental Plan 2013* to amend the planning controls for land at 23-35 Atchison Street, St Leonards. In particular, the proposed amendments include:

- increasing the maximum building height from 20m to 56m (equivalent to 16 storeys);
- increasing the minimum non-residential floor space ratio from 0.6:1 to 1.5:1; and
- imposing a maximum floor space ratio of 6.3:1

Accompanying the Planning Proposal is a draft Voluntary Planning Agreement (VPA) that proposes the dedication of a 5-metre wide strip for the purpose of a linear park along Oxley Street, the provision of a publically accessible 6-metre wide laneway from Atchison Street to Albany Lane along the western boundary of the site, and a monetary contribution of \$2,800,000 towards the upgrade of Hume Street Park or public open space within the North Sydney Local Government Area.

In addition, Council resolved to place an associated draft amendment to *North Sydney Development Control Plan 2013* (NSDCP 2013) on public exhibition concurrently with the Planning Proposal that seeks to introduce a 6m ground level setback control along the Atchison Street portion of the site.

The Planning Proposal, VPA and associated draft DCP amendment will be on public exhibition from Thursday 4 April 2019 to Thursday 2 May 2019.

DEVELOPMENT CONTROL PLANS:

d

North Sydney Development Control Plan 2013

North Sydney Development Control Plan 2013 applies to all land to which North Sydney Local Environmental Plan 2013 applies. The Development Control Plan was adopted by Council on 2 September 2013 and came into effect on 13 September 2013. Amended 20/02/14. Amended 08/01/2015. Amended 26/03/2015. Amended 6/08/2015. Amended 5/11/2015. Amended 7/07/2016. Amended 13/10/2016. Amended 19/07/2017. Amended 16/11/2017. Amended 7/12/2017. Amended 15/03/2018.

INFRASTRUCTURE CONTRIBUTION PLANS:

North Sydney Section 94 Contributions Plan. Local infrastructure contributions plan made under Section 7.11 of the Environmental Planning and Assessment Act 1979, applying to all development in the North Sydney local government area. Effective from 20 June 2013.

HERITAGE CONTROLS:

The subject land IS NOT WITHIN A CONSERVATION AREA, under clause 5.10 - Heritage Conservation to *North Sydney Local Environmental Plan 2013*.

The subject land IS NOT identified as containing A HERITAGE ITEM, under clause 5.10 - Heritage Conservation to North Sydney Local Environmental Plan 2013.

The subject land IS NOT identified as containing a HERITAGE ITEM under Sydney Regional Environmental Plan (Sydney Harbour Catchment) 2005.

N	
address	200 Miller Street North Sydney NSW 2060 telephone (02) 9936 8100
all correspondence	General Manager North Sydney Council facsimile (02) 9936 8177
	PO Box 12 North Sydney NSW 2059 email council@northsydney.nsw.gov.au
	DX10587 internet www.northsydney.nsw.gov.au

internet www.northsydney.nsw.gov.au ABN 32 353 260 317

OTHER CONTROLS:

The subject land IS AFFECTED by State Environmental Planning Policy (Coastal Management) 2018. The Plan identifies the subject land as being located within one or more of the following areas:

- Wholly within the Coastal Environment Area
- Wholly within the Coastal Use Area

The subject land is NOT PROCLAIMED as a MINE SUBSIDENCE DISTRICT within the meaning of Section 15 of the Mine Subsidence Compensation Act 1961.

The subject land is NOT AFFECTED by any ROAD WIDENING OR ROAD REALIGNMENT under the Roads Act 1993.

The subject land is NOT AFFECTED by any ROAD WIDENING OR ROAD REALIGNMENT under any environmental planning instrument.

The subject land is NOT AFFECTED by any ROAD WIDENING OR ROAD REALIGNMENT under any Council resolution.

The subject land is NOT IDENTIFIED as BUSHFIRE PRONE LAND on Council's Bushfire Prone Land Map as certified by the NSW Rural Fire Service Commissioner dated 22 June 2018 pursuant to the requirements under the of the Rural Fires Act 1997 and Environmental Planning and Assessment Act 1979.

The subject land is NOT SUBJECT to any reservation for LAND ACQUISITION by a public authority for any purpose under any environmental planning instrument applying to the land as set out in this certificate.

Council is NOT AWARE of the subject land being subject to an ORDER issued under the Trees (Disputes Between Neighbours) Act 2006.

The subject land IS AFFECTED by Sydney Harbour Regional Environmental Plan (Sydney Harbour Catchment) 2005. The Plan identifies the whole or part of the subject land as being located within one or more of the following:

- Foreshores and Waterways Area
- a zone under the Zoning Map
- a Wetland Protection Area
- Sydney Opera House Buffer Zone

or comprising one or more of the following:

- a Strategic Foreshore Site
- a Heritage Item

Loose-fill Asbestos Insulation

Council has no record of the subject land being identified on the NSW Fair Trading's Loose-Fill Asbestos Insulation Register as containing a residential building containing loose-fill asbestos insulation, (sometimes called "Mr Fluffy" insulation). Loose-fill asbestos is easy to disturb and can become airborne and it is then easily inhaled. Inhaling asbestos fibres can result in serious illness including asbestosis, lung cancer and mesothelioma.

You are advised to contact NSW Fair Trading for more information: https://www.fairtrading.nsw.gov.au/housing-and-property/loose-fill-asbestos-insulation

N	0	R	т	н	A ⁻ S						EM 2		19	с	0	U	N	с		age 78 L
address	200	Mill	ler S	treet	North	Syd	ney	NSW	20	60		OUNC			•		(02)			
all correspondence				-					cil					fac			(02)			
		ьох 1058		Norti	1 Sydne	y na	SVV 2	2059						in						:hsydney.nsw.gov.au dney.nsw.gov.au
																	32 3			
															AB	N	32 3	53 20	60	

Note: Nothing in this statement relates to information about the presence of bonded asbestos materials such as asbestos cement sheeting which may have been used at this site.

Council is not aware of any Affected Building Notice, Building Product Rectification Order or Intention to make a Building Product Rectification Order made under the <u>Building Products (Safety) Act 2017</u> applying to the subject land.

The subject land is NOT AFFECTED by a policy, adopted by the Council or adopted by any other public authority and notified to the Council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the Council, that restricts the development of the land by reason of the likelihood of landslip, bushfire, flooding, tidal inundation, subsidence, acid sulphate soils or any other risk.

THE FOLLOWING STATE ENVIRONMENTAL PLANNING POLICIES AND REGIONAL ENVIRONMENTAL PLANS APPLY:

State Environmental Planning Policies (SEPPs)

- SEPP No. 1 Development Standards
- SEPP No. 19 Bushland in urban areas
- SEPP No. 33 Hazardous and offensive development
- SEPP No. 50 Canal estate development
- SEPP No. 55 Remediation of land
- SEPP No. 64 Advertising and signage
- SEPP No. 65 Design Quality of Residential Apartment Development
- SEPP No. 70 Affordable Housing (Revised Schemes)
- SEPP (Affordable Rental Housing) 2009
- SEPP (Building Sustainability Index: BASIX) 2004
- SEPP (Coastal Management) 2018 (land wholly affected)
- SEPP (Concurrences) 2018
- SEPP (Educational Establishments & Child Care Facilities) 2017
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP (Housing for Seniors or People with a Disability) 2004 formerly SEPP (Seniors Living) 2004
- SEPP (Infrastructure) 2007
- SEPP (Primary Production and Rural Development) 2019
- SEPP (State Significant Precincts) 2005 formerly SEPP Major Development, SEPP Major Projects & SEPP State Significant Development
- SEPP (Mining, Petroleum Production and Extractive Industries) 2007
- SEPP (Miscellaneous Consent Provisions) 2007 formerly SEPP (Temporary Structures) 2007
- SEPP (State and Regional Development) 2011
- SEPP (Vegetation in Non-Rural Areas) 2017

Regional Environmental Plans (REPs) (Deemed SEPPs)

Sydney REP (Sydney Harbour Catchment) 2005

Note: summaries of the SEPPs and deemed SEPPs are provided on the Department of Planning's website at: <u>www.planning.nsw.gov.au</u>

Draft State Environmental Planning Policies (SEPPs)

Draft SEPP No. 66 - Integration of Land Use and Transport Draft SEPP (Application of Development Standards) 2004 Draft SEPP (Competition) 2010 Draft SEPP (Environment) 2017

Draft SEPP (Remediation of Land) 2018

Note: summaries of the draft SEPPs are provided on the Department of Planning's website at: www.planning.nsw.gov.au

FOR THE PURPOSE OF SECTION 10.7(2) AND CLAUSE 3 TO SCHEDULE 4 OF THE ENVIRONMENTAL PLANNING AND ASSESSMENT REGULATION 2000, THE FOLLOWING INFORMATION IS PROVIDED:

Rural Housing Code

Complying development types specified within the Rural Housing Code under Part 3A of *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Housing Alterations Code

Complying development types specified within the Housing Alterations Code under Part 4 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

General Development Code

Complying development types specified within the General Development Code under Part 4A State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Commercial and Industrial Alterations Code

Complying development types specified within the Commercial and Industrial Alterations Code under Part 5 of *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Commercial and Industrial (New Buildings and Additions) Code

Complying development types specified within the Commercial and Industrial (New Buildings and Additions) Code under Part 5A of *State Environmental Planning Policy (Exempt and Complying Development Codes)* 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Subdivisions Code

Complying development types specified within the Subdivisions Code under Part 6 of *State Environmental Planning Policy (Exempt and Complying Development Codes) 2008* CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Demolition Code

Complying development types specified within the Demolition Code under Part 7 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Fire Safety Code

C

Page 80

address 200 Miller Street North Sydney NSW 2060

D

N

all correspondence General Manager North Sydney Council PO Box 12 North Sydney NSW 2059 DX10587

N 0 R т н

> telephone (02) 9936 8100 facsimile (02) 9936 8177

email council@northsydney.nsw.gov.au internet www.northsvdnev.nsw.gov.au ABN 32 353 260 317

Complying development types specified within the Fire Safety Code under Part 8 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Container Recycling Facilities Code

Complying development types specified within the Container Recycling Facilities Code under Part 5B of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Low Rise Medium Density Housing Code

Complying development types specified within the Low Rise Medium Density Housing Code under Part 3B of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Greenfield Housing Code

Complying development types specified within the Greenfield Housing Code under Part 3C of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

Note. This part of the Planning Certificate only addresses matters raised in Clauses 1.17A(c)-(e), (2), (3) and (4), 1.18 (1)(c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008. It is your responsibility to ensure that you comply with any other relevant requirements of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008. Failure to comply with these provisions may mean that a Complying Development Certificate issued under the provisions of the State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 is invalid.

Housing Code

Complying development types specified within the Housing Code under Part 3 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 CAN BE UNDERTAKEN ON THE SUBJECT LAND.

FOR THE PURPOSE OF SECTION 59(2) OF THE CONTAMINATED LAND MANAGEMENT ACT 1997, THE FOLLOWING INFORMATION IS PROVIDED:

Council is NOT AWARE of the land (or part of the land) being declared SIGNIFICANTLY CONTAMINATED land, as defined under Section 11 of the Contaminated Land Management Act, 1997.

Council is NOT AWARE of the land (or part of the land) being subject to a management order, as defined under Section 14(1) of the Contaminated Land Management Act, 1997.

Council is NOT AWARE of the land (or part of the land) being the subject of an approved voluntary management proposal, as defined under Section 17(1) of the Contaminated Land Management Act, 1997.

Council is NOT AWARE of the land (or part of the land) being subject to an ongoing maintenance order, as defined under Section 28(2) of the Contaminated Land Management Act, 1997.

Council is NOT AWARE of the land (or part of the land) being the subject of a site audit statement, as defined under Part 4 of the Contaminated Land Management Act, 1997.

FOR THE PURPOSE OF SECTION 10.7(5) THE FOLLOWING INFORMATION IS PROVIDED:

The subject land IS NOT LISTED in the Register of the National Trust of NSW.

N .	~		-								EM 2	A HANNE	19		~			~		age 81	
N	0	ĸ	I.	н	S	T	D	N	E	T			EY	C	0	U	N	С	1	L	
address	200	Mill	ler S	treet	Nortl	n Syd	ney	NSW	20	60		OUNC	S/	tele	phoi			9936			
all correspondence	Ger	neral	Mai	nager	North	Sydr	ney	Coun	cil					fac	simi	le	(02)	9936	5 81	177	
	PO	Box	12	North	sydno	ey NS	SW :	2059							emo	il	cour	cil@r	nort	hsydney.nsw.go	ov.au
	DX	1058	7											in	tern	et	www	.nort	hsy	dney.nsw.gov.a	u
															AB	Ν	32 3	53 20	50 3	317	

The subject land is NOT AFFECTED by the HERITAGE ACT, 1977.

A Tree Preservation Order applies throughout the North Sydney Council area. Contact Council for details.

Information regarding loose-fill asbestos insulation

NSW Fair Trading have identified that some residential buildings in the North Sydney LGA may contain loose-fill asbestos insulation (sometimes called "Mr Fluffy" insulation), for example in the roof space of the building. Loose-fill asbestos is easy to disturb and can become airborne and it is then easily inhaled. Inhaling asbestos fibres can result in serious illness including asbestosis, lung cancer and mesothelioma. The use of loose-fill asbestos insulation was banned in 1980.

NSW Fair Trading maintains a Register of homes that are affected by loose-fill asbestos insulation.

You should make your own enquiries as to the age of the buildings on the land to which this certificate relates and, if it contains a building constructed prior to 1980, Council strongly recommends that any potential purchaser obtain advice from a licensed asbestos assessor to determine whether loose-fill asbestos is present in any building on the land and, if so, the health risks (if any) this may pose for the building's occupants.

Contact NSW Fair Trading for further information as follows: <u>https://www.fairtrading.nsw.gov.au/housing-and-property/loose-fill-asbestos-insulation</u>.

Note: Nothing in this statement relates to information about the presence of bonded asbestos materials such as asbestos cement sheeting which may have been used at this site.

FLOODING INFORMATION:

Council is in the possession of a flood study that covers the catchment in which this subject land is located. The *North Sydney LGA Flood Study* (prepared by WMA Water and dated February 2017) was adopted by Council on 20 February 2017. The *Flood Study* does not establish any flood related development controls, which are to be determined at the completion of the North Sydney Floodplain Risk Management Study and Plan. You should make you own enquiries as to whether the subject land to which this Certificate relates is affected by flooding and overland flow. Copies of the Flood Study are available for inspection at the Council if required.

For further information, please contact Council's DIVISION OF CITY STRATEGY

KEN GOULDTHORP GENERAL MANAGER Electronically generated certificate – no signature required

APPENDIX G

Defence UXO Records Search Results

September 2019

19126714-001-R-RevA

19126714-001-R-RevA

APPENDIX H

GO	LD	ER

REPORT OF BOREHOLE: BH01

CLIENT:	North Sydney Council
PROJECT:	Waverton Bowling Club
LOCATION:	Woolcott Street, Waverton
JOB NO:	19126714

COORDS: 333219.0 m 6254165.0 m 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.70 m

SHEET: 1 OF 1 DRILL RIG: Hand Auger CONTRACTOR: LOGGED: TMPA CHECKED: SPD

		Dri	lling		Sampling				Field Material Desc	riptio	on	
МЕТЦОЛ	PENETRATION	RESISTANCE WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	N	1	0.0 - -	0.40	BH01_0.1 0.10-0.20 m Rec = 100/100 mm QCA100 QCB100 R = 0A PID = 1.8 ppm	× · · · · · · · · · · · · · · · · · · ·	× •× •×		FILL: Sitty SAND fine to medium grained, brown, low plasticity silt	м		
	F	1	0.5—	0.50	BH01_0.5 0.50-0.60 m Rec = 100/100 mm R = 3A PID = 0.7 ppm	°0	× 0 0 0 0		FILL: Sandy GRAVEL fine to coarse grained, sub-angular to angular, black, fine to coarse grained sand, porous, shiny and light (clinker)			
			- - 1.0 -	-					END OF BOREHOLE @ 0.70 m REFUSAL BACKFILLED Refusal on large sandstone boulders			
004 Datgel Tools			- - 1.5— -	-								
24/09/2019 18:32 8.30			- - 2.0—	-								
3PJ < <drawingfile>></drawingfile>			-									
L PAGE GINT LOGS.C			- 2.5—	-								
AP NON-CORED FUL			-									
GAP 8_16.8 LB.GLB Log GAP NON-CORED FULL PAGE GINT LOGS.GPJ < <drawingfile>> 24/09/2019 18:32 8.30.004 DageI Tools</drawingfile>			3.0 —						conjunction with accompanying notes and abbreviations. pt to assess possible contamination. Any references to pot			

56

G	01	_ D	ER
	-		

PROJECT: Waverton Bowling Club

19126714

LOCATION: Woolcott Street, Waverton

North Sydney Council

CLIENT:

JOB NO:

REPORT OF BOREHOLE: BH02

COORDS: 333	232.0 m 6254131.0 m
SURFACE RL:	DATUM: AHD
INCLINATION:	-90°
HOLE DEPTH:	0.70 m

SHEET: 1 OF 1 DRILL RIG: Hand Auger CONTRACTOR: LOGGED: TMPA CHECKED: SPD

			lling		Sampling	-			Field Material Desci	1		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
HA	М		0.0	0.40	BH02_0.1 0.10-0.20 m Rec = 100/100 mm R = 0A PID = 1.7 ppm		* · · × · ·		FILL: Silty SAND fine to medium grained, brown, low plasticity silt	м		
	н		- 0.5	0.40	BH02_0.5 0.50-0.60 m Rec = 100/100 mm R = 0A PID = 1.6 ppm		* * * * * *		: as above granite cobbles and boulders present (ballast)			
			- - 1.0 —						END OF BOREHOLE @ 0.70 m REFUSAL BACKFILLED Refusal on large sandstone boulders			
			-									
			- 1.5—									
			-									
			2.0									
			- - 2.5—									
			-									
			3.0-	T	his report of borehole	mu	st be re	ead ii	n conjunction with accompanying notes and abbreviations. I pt to assess possible contamination. Any references to pot	t has	beer	n prepared for

<u> G</u> OLDER	REPORT OF BOREHOLE: BH03
	SHEET: 1 OF 1

CLIENT:North Sydney CouncilPROJECT:Waverton Bowling ClubLOCATION:Woolcott Street, WavertonJOB NO:19126714

COORDS: 333263.0 m 6254141.0 m 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.80 m SHEET: 1 OF 1 DRILL RIG: Hand Auger CONTRACTOR: LOGGED: TMPA I CHECKED: SPD I

Drilling Sampling						Field Material Description							
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC	LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	L				BH03_0.1 0.10-0.20 m Rec = 100/100 mm R = 0A PID = 1.9 ppm	×	* * *		FILL: Silty SAND fine to medium grained, brown, low plasticity silt			roots present at 0.2m bgl	
ΗA	н		- - 0.5-	0.30	BH03_0.5 0.50-0.60 m	0	0		FILL: Gravelly SAND fine to coarse grained, yellow brown, fine to coarse grained, angular to subrounded (sandstone) gravel : as above with clay (orange/ grey), and trace clinker	м		pices of plastic and trace clinker present: 0.3m-0.8m bgl	
			-	0.70	Rec = 100/100 mm R = 3A PID = 1.3 ppm		0 0		: as above brown, no clinker END OF BOREHOLE @ 0,80 m REFUSAL				
			- 1.0 —						REFUSAL BACKFILLED Refusal on large sandstone boulders			-	
			-						2			-	
Datgel Tools			1.5 — -									-	
09/2019 18:32 8.30.004			- 2.0 —										
J < <drawingfile>> 24/0</drawingfile>			-									-	
PAGE GINT LOGS.GP.			- 2.5—									-	
AP NON-CORED FULL			-										
GAP 8_16.81B.GLB Log GAP NON-CORED FULL PAGE GINT LOGS GPJ <<0re>CPIawingFile>> 24/09/2019 18:32 8:30.004 Dagel Tools			- 3.0 —		echnical purposes only	y, witho	out a	atterr	n conjunction with accompanying notes and abbreviations. I hpt to assess possible contamination. Any references to pot ssarily indicate the presence or absence of soil or groundwa	entia	l cont	tamination are for	
₽9												RL3	

S	GOLDER	REPOR

CLIENT:

North Sydney Council

PROJECT: Waverton Bowling Club

LOCATION: Woolcott Street, Waverton

COORDS: 333284.0 m 6254142.0 m 56 SURFACE RL: DATUM: AHD INCLINATION: -90° HOLE DEPTH: 0.90 m

REPORT OF BOREHOLE: BH04

SHEET: 1 OF 1
DRILL RIG: Hand Auger
CONTRACTOR:
LOGGED: TMPA
CHECKED. SPD

JOB NO: 19126714									HOI	LE DEPTH: 0.90 m	CKED: SPD DATE: 24/9/19		
E			Dril	ling		Sampling				Field Material Desc			
	MEIHOU	PENETRATION RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
				—0.0— –	0.40	BH04_0.1 0.10-0.20 m Rec = 100/100 mm R = 0A PID = 1.3 ppm		* * * * * *		FILL: Silty SAND fine to medium grained, brown, low plasticity silt			
:	НА	м	Δ		0.40	BH04_0.5 0.50-0.60 m Rec = 100/100 mm R = 0A PID = 1.3 ppm BH04_0.8				FILL: SAND fine to medium grained, grey FILL: Sandy GRAVEL fine to medium grained, angular to subrounded, black, fine to coarse grained sand, porous (clinker), no odour	M	_	
_				1.0		0.80-0.90 m Rec = 100/100 mm R = 3A PID = 1.4 ppm		0.0.0		END OF BOREHOLE @ 0.90 m REFUSAL BACKFILLED Refusal on large sandstone boulders	w		
9 18:32 8.30.004 Datgel Tools				-									
.GPJ < <drawingfile>> 24/09/2019</drawingfile>				2.0									-
GAP 8_16.8LIB.GLB_Log_GAP_NON-CORED FULL PAGE_GINT_LOGS.GPJ_< <drawingfile>> 24/09/2019 18:32_8.30.004_Datget Tools</drawingfile>				_ 2.5— _									
VP 8_16.8 LIB.GLB Log GAP NO				- - 3.0 <i>-</i>	T geote	echnical purposes only	y, w	ithout a	atterr	n conjunction with accompanying notes and abbreviations. Inpt to assess possible contamination. Any references to pot ssarily indicate the presence or absence of soil or groundwa	entia	I cont	amination are for
ğ						, -			-				RL3

			_	_	_
G	Ο	L	D	Ε	R

PROJECT: Waverton Bowling Club

19126714

LOCATION: Woolcott Street, Waverton

North Sydney Council

CLIENT:

JOB NO:

REPORT OF BOREHOLE: BH05

COORDS: 333304.0 m 6254117.0 m	56
SURFACE RL: DATUM: AHD	
INCLINATION: -90°	
HOLE DEPTH: 0.95 m	

SHEET: 1 OF 1 DRILL RIG: Hand Auger CONTRACTOR: LOGGED: TMPA CHECKED: SPD

	Drilling Sampling					Sampling			Field Material Description						
METHOD	PENETRATION	RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS		
				0.0 		BH05_0.1 0.10-0.20 m Rec = 100/100 mm R = 0A PID = 1 ppm		× × × × × × × ×		FILL: Silty SAND fine to medium grained, brown, low plasticity silt	м				
HA		м	\square	0.5	0.50	BH05_0.5 0.50-0.60 m Rec = 100/100 mm R = 3A PID = 1.2 ppm BH05_0.9		× × × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FILL: Sandy GRAVEL fine to medium grained, angular to subrounded, dark brown/ black, fine to coarse grained sand, porous (clinker)	w		Plastic film present at 0.5m bgl		
<drawingfile>> 24/09/2019 18:32 8.30.004 Datgel Tools</drawingfile>				1.0		0.90-0.95 m Rec = 50/50 mm R = 3A PID = 0.7 ppm				END OF BOREHOLE @ 0.95 m REFUSAL BACKFILLED Refusal on large sandstone boulders					
GAP 8_16.8 LB.GLB Log GAP NON-CORED FULL PAGE GINT LOGS.GPJ < <drawingfile>> 24/09/2019 18:32 8.30.004 Datgel Tools</drawingfile>													-		
GAP 8_16.8 LIB.G		1		3.0 —		echnical purposes onl	y, w	ithout a	atterr	n conjunction with accompanying notes and abbreviations. I npt to assess possible contamination. Any references to pot ssarily indicate the presence or absence of soil or groundwa	entia	l cont	amination are for		

APPENDIX I

Laboratory Certificates

ら GOLDER

SAMPLE CHAIN OF CUSTODY DOCUMENTATION

ALS

No CONTAINERS

2

2

2

2

2

2

2

2

2

2

2

2

2

1

2

,2

4

BULLETIN BOARD

SAMPLE

MATRIX

SOIL

SOL

SOIL

ACM

SOIL

SOIL

WATER

÷.

Page 91

Sheet.....of.....

, OLDER ASSOCIATES PTY LTD : (0Z) 9478 3900 Phone: EN-002-18 : (02) 9478 3901 Pres PO22402 Project Manager: 0412 068 218 Emeil 0434 196 861 Tudenek@eokler.com.au Job Contact : Theodore Adcock Email Supeon / Forward Asper itos-buldwicastle A 0.31 CS: STOS - PRESENCE/ABSENCE EA2008) -bcBitn-b Envidab mination (Low/High RH(C6-40), BTEXN/IIM*8/PAII \LS W26) 40), BTEXN, HM* PCB 1.4 75 C 11 18. . . . SBESTOS - NEPM ALS EA200N) Condie / Courter Level of Conti VOC MMONIA ALS EK055) CYANII (KU25) No: OLD CP, C e mar to all Ry PO /Mx х х x Environmental Division х X Sydney Work Order Reference х х x x x х х x х х х х x х x X х х x х х х Telephone : + 61-2-8784 8555 х х х х Send sample to Envirolab Services for triplicate analyis х

 ϵ_{2}

100

19126714

Waverton Bowling Club

Theodore Adcock

48hrs

5 Days

EXCEL

Comments/Special Instructions: Please send deliverables to SDoyle@golder.com.au, Tadcock@golder.com.au

SAMPLE

TIME

DISK Standard

ESDAT

SAMPLE

TYPE

Date Required By:

EMAIL

SAMPLE

DATE

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

2/09/2019

Π

T FAX

Ship sample QCB100 to Envirolab Services for triplicate analysis

SAMPLE

m

BH01 0.1

BH01 0.5

BH02 0.1

BH02 0.5

BH03 0.1

BH03 0.5

BH04 0.1

BH04 0.5

BH04 0.8

BH05 0.1

BH05 0.5

BH05 0.9

Trans01

ASB01

OCA100

QCB100

RB

 $\mathcal{L}B$

 τ

- S \mathbf{C}

24hrs

36hrs

HARD

PDF

TAR

m

2

3

X

6

Э

9

iØ

н

12

13

14

15

10

-

5

Ň

19 0

ų

SAMPLE MATRIX - S	MPLE MATRIX - Soil/Setiment/fill/WaterOther SAMPLE TYPE = Composite(C)Distrete(DS)/Core(CR), Grab Sample (GS) HIGH CONCENTRATION: circle expected parameters in analysis list														
	SIGNATURE	COMPANY	DATE	TIME		SIGNATURE	COMPANY	DATE	TIME	Method of Shipment					
RELEASED BY	Theodore Adcock	Golder Associates	3/09/2019		RELEASED BY				L	Shipping Ref.					
RECEIVED BY	Mini	Ars	4/9/19	3:452	RECEIVED BY										
RELEASED BY		<u> </u>		7	To Beckhier One By An	alysing Laboratory	LANDAUTES	TNRE		popole and the state					
RECEIVED BY						Colled ?		Bill loc							
RELEASED BY						Propa		Addrem							
DE CEDIED BY					Caller	Ambient 201			的構成結果	中國中國 植物学					

THIS FORM IS TO BE SIGNED BY GOLDER STAFF; COURIER/S; LABORATORY ON RECEIPT OF SAMPLES.

RL3 SNT004 Feb 2011

S) Environmental

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	ES1928334		
Client Contact Address	: GOLDER ASSOCIATES : MR THEODORE ADCOCK : LEVEL 1, 124 PACIFIC HIGHWAY ST LEONARDS NSW, AUSTRALIA 2065	Contact : C Address : 2	Environmental Division Sydney Customer Services ES 277-289 Woodpark Road Smithfield ISW Australia 2164
E-mail Telephone Facsimile	: tadcock@golder.com.au : :	Telephone : +	ALSEnviro.Sydney@ALSGlobal.com 61-2-8784 8555 61-2-8784 8500
Project Order number	: 19126714 : PO22402	Quote number : E	of 3 EM2017GOLASS0027 (EN/002/18 lational BQ)
C-O-C number Site Sampler	: : Waverton Bowling Club : THEODORE ADCOCK	QC Level : N	NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Receive Client Requested Due Date	ed : 04-Sep-2019 15:45 : 11-Sep-2019	Issue Date Scheduled Reporting Date	: 05-Sep-2019 : 11-Sep-2019
Delivery Detail. Mode of Delivery No. of coolers/boxes Receipt Detail	S : Carrier : 1 :	Security Seal Temperature No. of samples received /	: Not Available : 5.3 - Ice present analysed : 20 / 17

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample QCB100 has been forwarded to Envirolab as per COC request.
- Extra sample BH01 0.9 received by ALS, this has been kept on hold.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date	: 05-Sep-2019
Page	: 2 of 3
Work Order	ES1928334 Amendment 0
Client	: GOLDER ASSOCIATES

Sample Container(s)/Preservation Non-Compliances

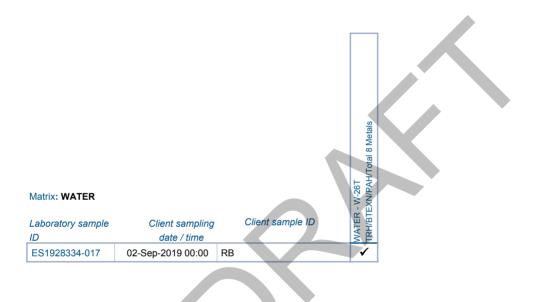
All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL


uded in the package. time is provided, the date of samplin sampling date wi displayed in bra	the sampling time will g. If no sampling date Il be assumed by the ckets without a time	uested	- EA055-103 ure Content	- EA200N stos in Soils - (<1kg samples ONLY)	- EK025SF (Solids) CN by Segmented Flow Analyser	- EK055 (solids) onia as N	- EP075 (solids) volatile Organic Compounds	SOIL - S-19 TRH/BTEXN/PAH/Ph/OC/OP/PCB/8 metals
date / time	Client sample ID		SOIL Moist	SOIL Asbe	SOIL	SOIL	SOIL	SOIL TRH/
02-Sep-2019 00:00	BH01_0.1		✓	4	 ✓ 	\checkmark		✓
02-Sep-2019 00:00	BH01_0.5	✓						
02-Sep-2019 00:00	BH02_0.1		\checkmark				\checkmark	
02-Sep-2019 00:00	BH02_0.5		\checkmark		 ✓ 	✓		✓
02-Sep-2019 00:00	BH03_0.1		\checkmark	\checkmark			1	
02-Sep-2019 00:00	BH03_0.5		\checkmark		✓	✓		
02-Sep-2019 00:00	BH04_0.1		\checkmark				1	
02-Sep-2019 00:00	BH04_0.5		1					✓
02-Sep-2019 00:00	BH04_0.8		✓		✓	✓	1	
02-Sep-2019 00:00	BH05_0.1		✓	✓				✓
02-Sep-2019 00:00	BH05_0.5	1						
02-Sep-2019 00:00	BH05_0.9		✓		✓	✓	✓	
02-Sep-2019 00:00	Trans01		✓	✓				✓
02-Sep-2019 00:00	QCA100		✓		✓	✓		✓
02-Sep-2019 00:00	BH01 0.9	✓						
	uded in the package. time is provided, the date of sampling sampling date wi displayed in bra Client sampling date / time 02-Sep-2019 00:00 02-Sep-2019 00:00	time is provided, the sampling time will the date of sampling. If no sampling date sampling date will be assumed by the displayed in brackets without a time Client sampling date / time 02-Sep-2019 00:00 BH01_0.1 02-Sep-2019 00:00 BH01_0.5 02-Sep-2019 00:00 BH02_0.1 02-Sep-2019 00:00 BH02_0.5 02-Sep-2019 00:00 BH03_0.1 02-Sep-2019 00:00 BH03_0.5 02-Sep-2019 00:00 BH04_0.1 02-Sep-2019 00:00 BH04_0.5 02-Sep-2019 00:00 BH04_0.5 02-Sep-2019 00:00 BH04_0.5 02-Sep-2019 00:00 BH05_0.1 02-Sep-2019 00:00 BH05_0.5 02-Sep-2019 00:00 BH05_0.5 02-Sep-2019 00:00 BH05_0.9 02-Sep-2019 00:00 BH05_0.9 02-Sep-2019 00:00 CCA100	uded in the package. time is provided, the sampling time will the date of sampling. If no sampling date sampling date will be assumed by the displayed in brackets without a time uithout a time Client sampling date / time Client sample ID uithout a time 02-Sep-2019 00:00 BH01_0.1 02-Sep-2019 00:00 BH02_0.1 ✓ 02-Sep-2019 00:00 BH02_0.5 02-Sep-2019 00:00 BH03_0.1 ✓ 02-Sep-2019 00:00 BH03_0.5 ✓ 02-Sep-2019 00:00 BH04_0.1 02-Sep-2019 00:00 BH04_0.5 ✓ 02-Sep-2019 00:00 BH04_0.5 ✓ 02-Sep-2019 00:00 BH05_0.1 ✓ 02-Sep-2019 00:00 BH05_0.9 ✓ 02-Sep-2019 00:00 BH05_0.9 ✓ 02-Sep-2019 00:00 BH05_0.9 ✓ 02-Sep-2019 00:00 BH05_0.9 ✓ 02-Sep-2019 00:00 Client sample ID ✓ 02-Sep-2019 00:00	uded in the package. time is provided, the sampling time will the date of sampling. If no sampling date sampling date will be assumed by the displayed in brackets without a timepageoff of time of time client sample ID of timepageoff of time of time of time timeClient sampling date / timeClient sample ID of timevv02-Sep-2019 00:00 02-Sep-2019 00:00 02-Sep-2019 00:00BH01_0.1vv02-Sep-2019 00:00 02-Sep-2019 00:00 02-Sep-2019 00:00 02-Sep-2019 00:00BH02_0.1vv02-Sep-2019 00:00 02-Sep-2019 00:00iivvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	uded in the package. time is provided, the sampling time will the date of sampling. If no sampling date sampling date will be assumed by the displayed in brackets without a timepagebug stress of the package. UO Stress OPH OD Package.Pagebug stress oph of the package.Pag	uded in the package. time is provided, the sampling time will the date of sampling. If no sampling date sampling date will be assumed by the displayed in brackets without a timepagebase set support (SPUP)	uded in the package. time is provided, the sampling time will the date of sampling. If no sampling date sampling date will be assumed by the displayed in brackets without a time passible set set set set set set set set set se	uded in the package. time is provided, the sampling time will the date of sampling. If no sampling date sampling date will be assumed by the displayed in brackets without a timepagebase support of the sampling date support of the sampling date

Matrix: SOIL Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - S-18 TRH(C6-C9)/BTEXN
ES1928334-018	[28-Aug-2019]	TS	1
ES1928334-019	[30-Aug-2019]	ТВ	1
ES1928334-020	[28-Aug-2019]	Trip Spike Control	✓

Issue Date	: 05-Sep-2019
Page	: 3 of 3
Work Order	ES1928334 Amendment 0
Client	: GOLDER ASSOCIATES

Page 94

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE

ACCOUNTET ATABLE		
- A4 - AU Tax Invoice (INV)	Email	au_accountspayable@golder.com.a
		u
S DOYLE		
 *AU Certificate of Analysis - NATA (COA) 	Email	SDoyle@golder.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	SDoyle@golder.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	SDoyle@golder.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	SDoyle@golder.com.au
- Chain of Custody (CoC) (COC)	Email	SDoyle@golder.com.au
- EDI Format - ESDAT (ESDAT)	Email	SDoyle@golder.com.au
THEODORE ADCOCK		
 *AU Certificate of Analysis - NATA (COA) 	Email	tadcock@golder.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	tadcock@golder.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	tadcock@golder.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	tadcock@golder.com.au
- Chain of Custody (CoC) (COC)	Email	tadcock@golder.com.au
- EDI Format - ESDAT (ESDAT)	Email	tadcock@golder.com.au

	CI	ERTIFICATE OF ANALYSIS		
Work Order	ES1928334	Page	: 1 of 32	
Client	: GOLDER ASSOCIATES	Laboratory	: Environmental Division S	Sydney
Contact	: MR THEODORE ADCOCK	Contact	: Customer Services ES	
Address	ELEVEL 1, 124 PACIFIC HIGHWAY ST LEONARDS NSW, AUSTRALIA 2065	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: 19126714	Date Samples Received	: 04-Sep-2019 15:45	SMIIII.
Order number	: PO22402	Date Analysis Commenced	: 06-Sep-2019	
C-O-C number	:	Issue Date	: 11-Sep-2019 15:58	
Sampler	: THEODORE ADCOCK		·	Hac-MRA NATA
Site	: Waverton Bowling Club			
Quote number	: EN/002/18 National BQ			Accreditation No. 825
No. of samples received	: 20			Accredited for compliance with
No. of samples analysed	: 17			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Alana Smylie	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW	
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW	
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW	
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW	
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW	
Evie Sidarta	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW	
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW	

Page	2 of 32
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EP075: Poor surrogate recovery has been detected due to sample matrix
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EG005: Poor precision was obtained for Zinc on sample ES1928515-2. Results have been confirmed by re-extraction and re-analysis.
- EA200 Legend
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- The trip spike and its control have been analysed for volatile TPH and BTEX only. EP080: The trip spike and control were prepared in the lab using reagent grade sand spiked with petrol. The spike was dispatched from the lab and the control retained.
- EP075: 'Sum of PAH' is the sum of the USEPA 16 priority PAHs
- EA200N: Asbestos weights and percentages are not covered under the Scope of NATA Accreditation.
 Weights of Asbestos are based on extracted bulk asbestos, fibre bundles, and/or ACM and do not include respirable fibres (if present)
 The Asbestos (Fines and Fibrous) weight is calculated from the extracted Fibrous Asbestos and Asbestos Fines as an equivalent weight of 100% Asbestos
 Percentages for Asbestos content in ACM are based on the 2013 NEPM default values.
 All calculations of percentage Asbestos under this method are approximate and should be used as a guide only.
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200N: ALS laboratory procedures and methods used for the identification and quantitation of asbestos are consistent with AS4964-2004 and the requirements of the 2013 NEPM for Assessment of Site Contamination

	3 of 32 ES1928334
	: GOLDER ASSOCIATES
Project	19126714

Page 97

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.
- EA200: N/A Not Applicable

Page	: 4 of 32
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
	Cli	ient samplii	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-	-110°C)							
Moisture Content		0.1	%		14.8		15.6	14.3
Moisture Content		1.0	%	11.6		13.2		
EA200: AS 4964 - 2004 Identification of	Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No			No	
Asbestos (Trace)	1332-21-4	5	Fibres	No			No	
Asbestos Type	1332-21-4	-		-			-	
Sample weight (dry)		0.01	g	488			539	
Synthetic Mineral Fibre		0.1	g/kg	No			No	
Organic Fibre		0.1	g/kg	No			No	
APPROVED IDENTIFIER:		-		A. SMYLIE			A. SMYLIE	
EA200N: Asbestos Quantification (non	-NATA)							
Asbestos (Fines and Fibrous	1332-21-4	0.0004	g	<0.0004			<0.0004	
<7mm)								
Ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)	<0.001			<0.001	
Ø Asbestos Containing Material	1332-21-4	0.1	g	<0.1			<0.1	
Ø Asbestos Containing Material	1332-21-4	0.01	% (w/w)	<0.01			<0.01	
(as 15% Asbestos in ACM >7mm)								
Ø Weight Used for % Calculation		0.0001	kg	0.488			0.539	
Ø Fibrous Asbestos >7mm		0.0004	g	<0.0004			<0.0004	
EG005(ED093)T: Total Metals by ICP-A	ES							
Arsenic	7440-38-2	5	mg/kg	5		<5		
Cadmium	7440-43-9	1	mg/kg	<1		<1		
Chromium	7440-47-3	2	mg/kg	7		3		
Copper	7440-50-8	5	mg/kg	6		11		
Lead	7439-92-1	5	mg/kg	8		6		
Nickel	7440-02-0	2	mg/kg	4		10		
Zinc	7440-66-6	5	mg/kg	17		22		
EG035T: Total Recoverable Mercury by	y FIMS							
Mercury	7439-97-6	0.1	mg/kg	1.4		0.9		
EK025SF: Free CN by Segmented Flow	v Analyser							
Free Cyanide		1	mg/kg	<1		<1		<1
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20		<20		<20

Page	5 of 32
Work Order	ES1928334
Client	: GOLDER ASSOCIATES
Project	· 19126714
Појесс	. 13120714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
	Ci	ient sampli	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EP066: Polychlorinated Biphenyl	s (PCB) - Continued							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1		<0.1		
EP068A: Organochlorine Pesticio	des (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05		<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<u>A</u>	<0.05		
beta-BHC	319-85-7	0.05	mg/kg	<0.05		<0.05		
gamma-BHC	58-89-9	0.05	mg/kg	<0.05		<0.05		
delta-BHC	319-86-8	0.05	mg/kg	<0.05		<0.05		
Heptachlor	76-44-8	0.05	mg/kg	<0.05		<0.05		
Aldrin	309-00-2	0.05	mg/kg	<0.05		<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05		<0.05		
[^] Total Chlordane (sum)		0.05	mg/kg	<0.05		<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05		<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05		<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05		<0.05		
Dieldrin	60-57-1	0.05	mg/kg	<0.05		<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05		<0.05		
Endrin	72-20-8	0.05	mg/kg	<0.05		<0.05		
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05		<0.05		
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05		<0.05		
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05		<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05		<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05		<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2		<0.2		
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05		<0.05		
Methoxychlor	72-43-5	0.2	mg/kg	<0.2		<0.2		
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05		<0.05		
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05		<0.05		
	0-2							
EP068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05		<0.05		
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05		<0.05		
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2		<0.2		
Dimethoate	60-51-5	0.05	mg/kg	<0.05		<0.05		
Diazinon	333-41-5	0.05	mg/kg	<0.05		<0.05		
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05		<0.05		

Page : 6 of 32 Work Order : ES1928334 Client : GOLDER ASSOCIATES Project : 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
· · · · · · · · · · · · · · · · · · ·	Cli	ient samplir	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EP068B: Organophosphorus Pest	ticides (OP) - Continued							
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2		<0.2		
Malathion	121-75-5	0.05	mg/kg	<0.05		<0.05		
Fenthion	55-38-9	0.05	mg/kg	<0.05		<0.05		
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<u> </u>	<0.05		
Parathion	56-38-2	0.2	mg/kg	<0.2		<0.2		
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05		<0.05		
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05		<0.05		
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05		<0.05		
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05		<0.05		
Prothiofos	34643-46-4	0.05	mg/kg	<0.05		<0.05		
Ethion	563-12-2	0.05	mg/kg	<0.05		<0.05		
Carbophenothion	786-19-6	0.05	mg/kg	<0.05		<0.05		
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05		<0.05		
EP075(SIM)A: Phenolic Compoun	ds							
Phenol	108-95-2	0.5	mg/kg	<0.5		<0.5		
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5		<0.5		
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5		<0.5		
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1		<1		
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5		<0.5		
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5		<0.5		
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5		<0.5		
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5		<0.5		
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5		<0.5		
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5		<0.5		
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5		<0.5		
Pentachlorophenol	87-86-5	2	mg/kg	<2		<2		
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5		
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5		
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5		
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5		
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5		
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5		
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		<0.5		

Page: 7 of 32Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
	Cl	ient sampli	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons - Cont	inued						
Pyrene	129-00-0	0.5	mg/kg	<0.5		<0.5		
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5		
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5		<0.5		
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5		<0.5		
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5		
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5		
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5		
^ Sum of polycyclic aromatic hydrocarl	bons	0.5	mg/kg	<0.5		<0.5		
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5		
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6		
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2		
EP075A: Phenolic Compounds								
Phenol	108-95-2	0.5	mg/kg		<0.5		<0.5	
2-Chlorophenol	95-57-8	0.5	mg/kg		<0.5		<0.5	
2-Methylphenol	95-48-7	0.5	mg/kg		<0.5		<0.5	
3- & 4-Methylphenol	1319-77-3	0.5	mg/kg		<0.5		<0.5	
2-Nitrophenol	88-75-5	0.5	mg/kg		<0.5		<0.5	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg		<0.5		<0.5	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg		<0.5		<0.5	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg		<0.5		<0.5	
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg		<0.5		<0.5	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg		<0.5		<0.5	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg		<0.5		<0.5	
Pentachlorophenol	87-86-5	1	mg/kg		<1		<1	
EP075B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5		<0.5	
2-Methylnaphthalene	91-57-6	0.5	mg/kg		<0.5		<0.5	
2-Chloronaphthalene	91-58-7	0.5	mg/kg		<0.5		<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5		<0.5	
Acenaphthene	83-32-9	0.5	mg/kg		<0.5		<0.5	
Fluorene	86-73-7	0.5	mg/kg		<0.5		<0.5	
Phenanthrene	85-01-8	0.5	mg/kg		<0.5		<0.5	

Page : 8 of 32 Work Order : ES1928334 Client : GOLDER ASSOCIATES Project : 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
. ,	Cl	ient sampli	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EP075B: Polynuclear Aromatic Hyd	Irocarbons - Continued							
Anthracene	120-12-7	0.5	mg/kg		<0.5		<0.5	
Fluoranthene	206-44-0	0.5	mg/kg		<0.5		<0.5	
Pyrene	129-00-0	0.5	mg/kg		<0.5		<0.5	
N-2-Fluorenyl Acetamide	53-96-3	0.5	mg/kg		<0.5		<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5		<0.5	
Chrysene	218-01-9	0.5	mg/kg		<0.5		<0.5	
Benzo(b+j) & Benzo(k)fluoranthene	205-99-2 207-08-9	1	mg/kg		<1		<1	
7.12-Dimethylbenz(a)anthracene	57-97-6	0.5	mg/kg		<0.5		<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5		<0.5	
3-Methylcholanthrene	56-49-5	0.5	mg/kg		<0.5		<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5		<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5		<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5		<0.5	
Sum of PAHs		0.5	mg/kg		<0.5		<0.5	
Sum of PARS		0.5	mg/kg		<0.5		<0.5	
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg		0.6		0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg		1.2		1.2	
		0.0	ilig/kg		1.2		1.2	
EP075C: Phthalate Esters	101.11.0	0.5	and then		-0 F		-0 F	1
Dimethyl phthalate	131-11-3	0.5	mg/kg		<0.5		<0.5 <0.5	
Diethyl phthalate	84-66-2	0.5	mg/kg					
Di-n-butyl phthalate	84-74-2	0.5	mg/kg		<0.5		<0.5	
Butyl benzyl phthalate	85-68-7	0.5	mg/kg		<0.5		<0.5 <5.0	
bis(2-ethylhexyl) phthalate	117-81-7	5.0	mg/kg		<5.0			
Di-n-octylphthalate	117-84-0	0.5	mg/kg		<0.5		<0.5	
EP075D: Nitrosamines							• -	1
N-Nitrosomethylethylamine	10595-95-6	0.5	mg/kg		<0.5		<0.5	
N-Nitrosodiethylamine	55-18-5	0.5	mg/kg		<0.5		<0.5	
N-Nitrosopyrrolidine	930-55-2	1.0	mg/kg		<1.0		<1.0	
N-Nitrosomorpholine	59-89-2	0.5	mg/kg		<0.5		<0.5	
N-Nitrosodi-n-propylamine	621-64-7	0.5	mg/kg		<0.5		<0.5	
N-Nitrosopiperidine	100-75-4	0.5	mg/kg		<0.5		<0.5	
N-Nitrosodibutylamine	924-16-3	0.5	mg/kg		<0.5		<0.5	
N-Nitrosodiphenyl & Diphenylamine	86-30-6 122-39-4	1.0	mg/kg		<1.0		<1.0	
Dipnenylamine								

Page Work Order	: 9 of 32 · ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
	Cli	ient sampli	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EP075D: Nitrosamines - Continued								
Methapyrilene	91-80-5	0.5	mg/kg		<0.5		<0.5	
EP075E: Nitroaromatics and Ketones								
2-Picoline	109-06-8	0.5	mg/kg		<0.5		<0.5	
Acetophenone	98-86-2	0.5	mg/kg		<0.5		<0.5	
Nitrobenzene	98-95-3	0.5	mg/kg		<0.5		<0.5	
Isophorone	78-59-1	0.5	mg/kg		<0.5		<0.5	
2.6-Dinitrotoluene	606-20-2	1.0	mg/kg		<1.0		<1.0	
2.4-Dinitrotoluene	121-14-2	1.0	mg/kg		<1.0		<1.0	
1-Naphthylamine	134-32-7	0.5	mg/kg		<0.5		<0.5	
4-Nitroquinoline-N-oxide	56-57-5	0.5	mg/kg		<0.5		<0.5	
5-Nitro-o-toluidine	99-55-8	0.5	mg/kg		<0.5		<0.5	
Azobenzene	103-33-3	1	mg/kg		<1		<1	
1.3.5-Trinitrobenzene	99-35-4	0.5	mg/kg		<0.5		<0.5	
Phenacetin	62-44-2	0.5	mg/kg		<0.5		<0.5	
4-Aminobiphenyl	92-67-1	0.5	mg/kg		<0.5		<0.5	
Pentachloronitrobenzene	82-68-8	0.5	mg/kg		<0.5		<0.5	
Pronamide	23950-58-5	0.5	mg/kg		<0.5		<0.5	
Dimethylaminoazobenzene	60-11-7	0.5	mg/kg		<0.5		<0.5	
Chlorobenzilate	510-15-6	0.5	mg/kg		<0.5		<0.5	
P075F: Haloethers								
Bis(2-chloroethyl) ether	111-44-4	0.5	mg/kg		<0.5		<0.5	
Bis(2-chloroethoxy) methane	111-91-1	0.5	mg/kg		<0.5		<0.5	
4-Chlorophenyl phenyl ether	7005-72-3	0.5	mg/kg		<0.5		<0.5	
4-Bromophenyl phenyl ether	101-55-3	0.5	mg/kg		<0.5		<0.5	
P075G: Chlorinated Hydrocarbons								
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg		<0.5		<0.5	
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg		<0.5		<0.5	
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg		<0.5		<0.5	
Hexachloroethane	67-72-1	0.5	mg/kg		<0.5		<0.5	
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg		<0.5		<0.5	
Hexachloropropylene	1888-71-7	0.5	mg/kg		<0.5		<0.5	
Hexachlorobutadiene	87-68-3	0.5	mg/kg		<0.5		<0.5	
Hexachlorocyclopentadiene	77-47-4	2.5	mg/kg		<2.5		<2.5	
Pentachlorobenzene	608-93-5	0.5	mg/kg		<0.5		<0.5	

Page	: 10 of 32
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	19126714
110,000	. 10120111

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
· · · · · · · · · · · · · · · · · · ·	Cli	ent samplin	g date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EP075G: Chlorinated Hydrocarbo	ns - Continued							
Hexachlorobenzene (HCB)	118-74-1	1.0	mg/kg		<1.0		<1.0	
EP075H: Anilines and Benzidines								
Aniline	62-53-3	0.5	mg/kg		<0.5		<0.5	
4-Chloroaniline	106-47-8	0.5	mg/kg		<0.5		<0.5	
2-Nitroaniline	88-74-4	1.0	mg/kg		<1.0		<1.0	
3-Nitroaniline	99-09-2	1.0	mg/kg		<1.0		<1.0	
Dibenzofuran	132-64-9	0.5	mg/kg		<0.5		<0.5	
4-Nitroaniline	100-01-6	0.5	mg/kg		<0.5		<0.5	
Carbazole	86-74-8	0.5	mg/kg		<0.5		<0.5	
3.3`-Dichlorobenzidine	91-94-1	0.5	mg/kg		<0.5		<0.5	
EP075I: Organochlorine Pesticide	s							
alpha-BHC	319-84-6	0.5	mg/kg		<0.5		<0.5	
beta-BHC	319-85-7	0.5	mg/kg		<0.5		<0.5	
gamma-BHC	58-89-9	0.5	mg/kg		<0.5		<0.5	
delta-BHC	319-86-8	0.5	mg/kg		<0.5		<0.5	
Heptachlor	76-44-8	0.5	mg/kg		<0.5		<0.5	
Aldrin	309-00-2	0.5	mg/kg		<0.5		<0.5	
Heptachlor epoxide	1024-57-3	0.5	mg/kg		<0.5		<0.5	
alpha-Endosulfan	959-98-8	0.5	mg/kg		<0.5		<0.5	
4.4`-DDE	72-55-9	0.5	mg/kg		<0.5		<0.5	
Dieldrin	60-57-1	0.5	mg/kg		<0.5		<0.5	
Endrin	72-20-8	0.5	mg/kg		<0.5		<0.5	
beta-Endosulfan	33213-65-9	0.5	mg/kg		<0.5		<0.5	
4.4`-DDD	72-54-8	0.5	mg/kg		<0.5		<0.5	
Endosulfan sulfate	1031-07-8	0.5	mg/kg		<0.5		<0.5	
4.4`-DDT	50-29-3	1.0	mg/kg		<1.0		<1.0	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.5	mg/kg		<0.5		<0.5	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	mg/kg		<0.5		<0.5	
EP075J: Organophosphorus Pesti								
Dichlorvos	62-73-7	0.5	mg/kg		<0.5		<0.5	
Dimethoate	60-51-5	0.5	mg/kg		<0.5		<0.5	
Diazinon	333-41-5	0.5	mg/kg		<0.5		<0.5	
Chlorpyrifos-methyl	5598-13-0	0.5	mg/kg		<0.5		<0.5	

Page 104

Page: 11 of 32Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
	Cl	ient sampli	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
-				Result	Result	Result	Result	Result
EP075J: Organophosphorus Pesticide	s - Continued							
Malathion	121-75-5	0.5	mg/kg		<0.5		<0.5	
Fenthion	55-38-9	0.5	mg/kg		<0.5		<0.5	
Chlorpyrifos	2921-88-2	0.5	mg/kg		<0.5		<0.5	
Pirimphos-ethyl	23505-41-1	0.5	mg/kg		<0.5		<0.5	
Chlorfenvinphos	470-90-6	0.5	mg/kg		<0.5		<0.5	
Prothiofos	34643-46-4	0.5	mg/kg		<0.5		<0.5	
Ethion	563-12-2	0.5	mg/kg		<0.5		<0.5	
EP080/071: Total Petroleum Hydrocart	oons							
C6 - C9 Fraction		10	mg/kg	<10		<10		
C10 - C14 Fraction		50	mg/kg	<50		<50		
C15 - C28 Fraction		100	mg/kg	<100		<100		
C29 - C36 Fraction		100	mg/kg	190		<100		
^ C10 - C36 Fraction (sum)		50	mg/kg	190		<50		
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10		<10		
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10		<10		
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50		<50		
>C16 - C34 Fraction		100	mg/kg	<100		<100		
>C34 - C40 Fraction		100	mg/kg	220		<100		
^ >C10 - C40 Fraction (sum)		50	mg/kg	220		<50		
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50		<50		
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		
Toluene	108-88-3	0.5	mg/kg	<0.5		<0.5		
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5		<0.5		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5		<0.5		
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2		<0.2		
^ Total Xylenes		0.5	mg/kg	<0.5		<0.5		
Naphthalene	91-20-3	1	mg/kg	<1		<1		
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	108		111		

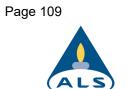
Page Work Order	: 12 of 32 : ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01_0.1	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5
	Cli	ient sampli	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-001	ES1928334-003	ES1928334-004	ES1928334-005	ES1928334-006
				Result	Result	Result	Result	Result
EP068S: Organochlorine Pesticid	e Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	77.9		80.6		
EP068T: Organophosphorus Pest	icide Surrogate							
DEF	78-48-8	0.05	%	119		87.4		
EP075(SIM)S: Phenolic Compoun	d Surrogates							
Phenol-d6	13127-88-3	0.5	%	107		99.9		
2-Chlorophenol-D4	93951-73-6	0.5	%	104		97.4		
2.4.6-Tribromophenol	118-79-6	0.5	%	84.5		70.2		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	97.4		88.7		
Anthracene-d10	1719-06-8	0.5	%	114		113		
4-Terphenyl-d14	1718-51-0	0.5	%	121		113		
EP075S: Acid Extractable Surroga	ates							
2-Fluorophenol	367-12-4	0.5	%		87.0		79.7	
Phenol-d6	13127-88-3	0.5	%		70.4		66.6	
2-Chlorophenol-D4	93951-73-6	0.5	%		78.2		61.0	
2.4.6-Tribromophenol	118-79-6	0.5	%		78.8		70.0	
EP075T: Base/Neutral Extractable	Surrogates							
Nitrobenzene-D5	4165-60-0	0.5	%		106		80.5	
1.2-Dichlorobenzene-D4	2199-69-1	0.5	%		94.1		88.8	
2-Fluorobiphenyl	321-60-8	0.5	%		108		105	
Anthracene-d10	1719-06-8	0.5	%		105		104	
4-Terphenyl-d14	1718-51-0	0.5	%		108		117	
EP080S: TPH(V)/BTEX Surrogates	;							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	103		91.8		
Toluene-D8	2037-26-5	0.2	%	110		101		
4-Bromofluorobenzene	460-00-4	0.2	%	111		97.5		

Page	: 13 of 32
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cli	ient sampliı	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
A055: Moisture Content (Dried @ 105-	110°C)							
Moisture Content		0.1	%	12.4		28.3		41.4
Moisture Content		1.0	%		21.4		14.3	
EA200: AS 4964 - 2004 Identification of	Asbestos in Soils	;						
Asbestos Detected	1332-21-4	0.1	g/kg		A		No	
Asbestos (Trace)	1332-21-4	5	Fibres				No	
Asbestos Type	1332-21-4	-					-	
Sample weight (dry)		0.01	g				529	
Synthetic Mineral Fibre		0.1	g/kg				No	
Organic Fibre		0.1	g/kg				No	
APPROVED IDENTIFIER:		-					A. SMYLIE	
EA200N: Asbestos Quantification (non-	NATA)							
^Ø Asbestos (Fines and Fibrous	1332-21-4	0.0004	g				<0.0004	
<7mm)			-					
Ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)				<0.001	
ØAsbestos Containing Material	1332-21-4	0.1	g				<0.1	
^Ø Asbestos Containing Material	1332-21-4	0.01	% (w/w)				<0.01	
(as 15% Asbestos in ACM >7mm)								
Ø Weight Used for % Calculation		0.0001	kg				0.529	
⌀ Fibrous Asbestos >7mm		0.0004	g				<0.0004	
EG005(ED093)T: Total Metals by ICP-A	ES							
Arsenic	7440-38-2	5	mg/kg		<5		13	
Cadmium	7440-43-9	1	mg/kg		<1		<1	
Chromium	7440-47-3	2	mg/kg		11		7	
Copper	7440-50-8	5	mg/kg		15		20	
Lead	7439-92-1	5	mg/kg		<5		27	
Nickel	7440-02-0	2	mg/kg		25		4	
Zinc	7440-66-6	5	mg/kg		9		26	
EG035T: Total Recoverable Mercury by	/ FIMS							
Mercury	7439-97-6	0.1	mg/kg		0.3		1.5	
EK025SF: Free CN by Segmented Flow								
Free Cyanide		1	mg/kg			<1		<1
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg			<20		<20
EP066: Polychlorinated Biphenyls (PCE			5 5			I		1


Page 107

Page	: 14 of 32					
Work Order	: ES1928334					
Client	: GOLDER ASSOCIATES					
Project	: 19126714					

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID		BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
Client sampling date / time		02-Sep-2019 00:00						
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP066: Polychlorinated Biphenyls	s (PCB) - Continued							
Total Polychlorinated biphenyls		0.1	mg/kg		<0.1		<0.1	
EP068A: Organochlorine Pesticid	es (OC)							
alpha-BHC	319-84-6	0.05	mg/kg		<0.05		<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05		<0.05	
beta-BHC	319-85-7	0.05	mg/kg		<0.05		<0.05	
gamma-BHC	58-89-9	0.05	mg/kg		<0.05		<0.05	
delta-BHC	319-86-8	0.05	mg/kg		<0.05		<0.05	
Heptachlor	76-44-8	0.05	mg/kg		<0.05		<0.05	
Aldrin	309-00-2	0.05	mg/kg		<0.05		<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05		<0.05	
^ Total Chlordane (sum)		0.05	mg/kg		<0.05		0.22	
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05		0.11	
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05		<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05		0.11	
Dieldrin	60-57-1	0.05	mg/kg		<0.05		0.05	
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05		0.11	
Endrin	72-20-8	0.05	mg/kg		<0.05		<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05		<0.05	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05		<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05		<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05		<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05		<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg		<0.2		<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg		<0.05		<0.05	
Methoxychlor	72-43-5	0.2	mg/kg		<0.2		<0.2	
[^] Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg		<0.05		0.05	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg		<0.05		0.11	
	0-2							
EP068B: Organophosphorus Pest	ticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg		<0.05		<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg		<0.05		<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg		<0.2		<0.2	
Dimethoate	60-51-5	0.05	mg/kg		<0.05		<0.05	
Diazinon	333-41-5	0.05	mg/kg		<0.05		<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg		<0.05		<0.05	

Page : 15 of 32 Work Order : ES1928334 Client : GOLDER ASSOCIATES Project : 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cli	ient samplir	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP068B: Organophosphorus Pest	ticides (OP) - Continued							
Parathion-methyl	298-00-0	0.2	mg/kg		<0.2		<0.2	
Malathion	121-75-5	0.05	mg/kg		<0.05		<0.05	
Fenthion	55-38-9	0.05	mg/kg		<0.05		<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg		<0.05		<0.05	
Parathion	56-38-2	0.2	mg/kg		<0.2		<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg		<0.05		<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg		<0.05		<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg		<0.05		<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg		<0.05		<0.05	
Prothiofos	34643-46-4	0.05	mg/kg		<0.05		<0.05	
Ethion	563-12-2	0.05	mg/kg		<0.05		<0.05	
Carbophenothion	786-19-6	0.05	mg/kg		<0.05		<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg		<0.05		<0.05	
EP075(SIM)A: Phenolic Compoun	ds							
Phenol	108-95-2	0.5	mg/kg		<0.5		<0.5	
2-Chlorophenol	95-57-8	0.5	mg/kg		<0.5		<0.5	
2-Methylphenol	95-48-7	0.5	mg/kg		<0.5		<0.5	
3- & 4-Methylphenol	1319-77-3	1	mg/kg		<1		<1	
2-Nitrophenol	88-75-5	0.5	mg/kg		<0.5		<0.5	
2.4-Dimethylphenol	105-67-9	0.5	mg/kg		<0.5		<0.5	
2.4-Dichlorophenol	120-83-2	0.5	mg/kg		<0.5		<0.5	
2.6-Dichlorophenol	87-65-0	0.5	mg/kg		<0.5		<0.5	
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg		<0.5		<0.5	
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg		<0.5		<0.5	
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg		<0.5		<0.5	
Pentachlorophenol	87-86-5	2	mg/kg		<2		<2	
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg		<0.5		<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg		<0.5		<0.5	
Acenaphthene	83-32-9	0.5	mg/kg		<0.5		<0.5	
Fluorene	86-73-7	0.5	mg/kg		<0.5		<0.5	
Phenanthrene	85-01-8	0.5	mg/kg		<0.5		1.0	
Anthracene	120-12-7	0.5	mg/kg		<0.5		<0.5	
Fluoranthene	206-44-0	0.5	mg/kg		<0.5		1.3	

Page : 16 of 32 Work Order : ES1928334 Client : GOLDER ASSOCIATES Project : 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cl	ient sampli	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic	c Hydrocarbons - Cont	inued						
Pyrene	129-00-0	0.5	mg/kg		<0.5		1.3	
Benz(a)anthracene	56-55-3	0.5	mg/kg		<0.5		<0.5	
Chrysene	218-01-9	0.5	mg/kg		<0.5		<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg		<0.5		0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg		<0.5		<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg		<0.5		<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg		<0.5		<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg		<0.5		<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg		<0.5		<0.5	
^ Sum of polycyclic aromatic hydrocark	oons	0.5	mg/kg		<0.5		4.1	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg		<0.5		<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg		0.6		0.6	
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg		1.2		1.2	
EP075A: Phenolic Compounds								
Phenol	108-95-2	0.5	mg/kg	<0.5		<0.5		<0.5
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5		<0.5		<0.5
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5		<0.5		<0.5
3- & 4-Methylphenol	1319-77-3	0.5	mg/kg	<0.5		<0.5		<0.5
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5		<0.5		<0.5
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5		<0.5		<0.5
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5		<0.5		<0.5
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5		<0.5		<0.5
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5		<0.5		<0.5
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5		<0.5		<0.5
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5		<0.5		<0.5
Pentachlorophenol	87-86-5	1	mg/kg	<1		<1		<1
EP075B: Polynuclear Aromatic Hyd	rocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5		<0.5		<0.5
2-Methylnaphthalene	91-57-6	0.5	mg/kg	<0.5		<0.5		<0.5
2-Chloronaphthalene	91-58-7	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5		<0.5		<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5		<0.5		<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5		<0.5		<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5		<0.5		<0.5

Page: 17 of 32Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cli	ient samplir	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP075B: Polynuclear Aromatic Hyd	rocarbons - Continued							
Anthracene	120-12-7	0.5	mg/kg	<0.5		<0.5		<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5		<0.5		<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5		<0.5		<0.5
N-2-Fluorenyl Acetamide	53-96-3	0.5	mg/kg	<0.5		<0.5		<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5		<0.5		<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(b+j) &	205-99-2 207-08-9	1	mg/kg	<1		<1		<1
Benzo(k)fluoranthene								
7.12-Dimethylbenz(a)anthracene	57-97-6	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5		<0.5		<0.5
3-Methylcholanthrene	56-49-5	0.5	mg/kg	<0.5		<0.5		<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5		<0.5		<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5		<0.5		<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5		<0.5		<0.5
^ Sum of PAHs		0.5	mg/kg	<0.5		<0.5		<0.5
` Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		<0.5		<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6		0.6		0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2		1.2		1.2
EP075C: Phthalate Esters								
Dimethyl phthalate	131-11-3	0.5	mg/kg	<0.5		<0.5		<0.5
Diethyl phthalate	84-66-2	0.5	mg/kg	<0.5		<0.5		<0.5
Di-n-butyl phthalate	84-74-2	0.5	mg/kg	<0.5		<0.5		<0.5
Butyl benzyl phthalate	85-68-7	0.5	mg/kg	<0.5		<0.5		<0.5
bis(2-ethylhexyl) phthalate	117-81-7	5.0	mg/kg	<5.0		<5.0		<5.0
Di-n-octylphthalate	117-84-0	0.5	mg/kg	<0.5		<0.5		<0.5
EP075D: Nitrosamines								
N-Nitrosomethylethylamine	10595-95-6	0.5	mg/kg	<0.5		<0.5		<0.5
N-Nitrosodiethylamine	55-18-5	0.5	mg/kg	<0.5		<0.5		<0.5
N-Nitrosopyrrolidine	930-55-2	1.0	mg/kg	<1.0		<1.0		<1.0
N-Nitrosomorpholine	59-89-2	0.5	mg/kg	<0.5		<0.5		<0.5
N-Nitrosodi-n-propylamine	621-64-7	0.5	mg/kg	<0.5		<0.5		<0.5
N-Nitrosopiperidine	100-75-4	0.5	mg/kg	<0.5		<0.5		<0.5
N-Nitrosodibutylamine	924-16-3	0.5	mg/kg	<0.5		<0.5		<0.5
N-Nitrosodiphenyl &	86-30-6 122-39-4	1.0	mg/kg	<1.0		<1.0		<1.0
Diphenylamine								-

Page Work Order	 18 of 32 ES1928334
Client	GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cli	ent samplii	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP075D: Nitrosamines - Continued								
Methapyrilene	91-80-5	0.5	mg/kg	<0.5		<0.5		<0.5
EP075E: Nitroaromatics and Ketones								
2-Picoline	109-06-8	0.5	mg/kg	<0.5		<0.5		<0.5
Acetophenone	98-86-2	0.5	mg/kg	<0.5	<u>A</u>	<0.5		<0.5
Nitrobenzene	98-95-3	0.5	mg/kg	<0.5		<0.5		<0.5
Isophorone	78-59-1	0.5	mg/kg	<0.5		<0.5		<0.5
2.6-Dinitrotoluene	606-20-2	1.0	mg/kg	<1.0		<1.0		<1.0
2.4-Dinitrotoluene	121-14-2	1.0	mg/kg	<1.0		<1.0		<1.0
1-Naphthylamine	134-32-7	0.5	mg/kg	<0.5		<0.5		<0.5
4-Nitroquinoline-N-oxide	56-57-5	0.5	mg/kg	<0.5		<0.5		<0.5
5-Nitro-o-toluidine	99-55-8	0.5	mg/kg	<0.5		<0.5		<0.5
Azobenzene	103-33-3	1	mg/kg	<1		<1		<1
1.3.5-Trinitrobenzene	99-35-4	0.5	mg/kg	<0.5		<0.5		<0.5
Phenacetin	62-44-2	0.5	mg/kg	<0.5		<0.5		<0.5
4-Aminobiphenyl	92-67-1	0.5	mg/kg	<0.5		<0.5		<0.5
Pentachloronitrobenzene	82-68-8	0.5	mg/kg	<0.5		<0.5		<0.5
Pronamide	23950-58-5	0.5	mg/kg	<0.5		<0.5		<0.5
Dimethylaminoazobenzene	60-11-7	0.5	mg/kg	<0.5		<0.5		<0.5
Chlorobenzilate	510-15-6	0.5	mg/kg	<0.5		<0.5		<0.5
EP075F: Haloethers								
Bis(2-chloroethyl) ether	111-44-4	0.5	mg/kg	<0.5		<0.5		<0.5
Bis(2-chloroethoxy) methane	111-91-1	0.5	mg/kg	<0.5		<0.5		<0.5
4-Chlorophenyl phenyl ether	7005-72-3	0.5	mg/kg	<0.5		<0.5		<0.5
4-Bromophenyl phenyl ether	101-55-3	0.5	mg/kg	<0.5		<0.5		<0.5
EP075G: Chlorinated Hydrocarbons								
1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5		<0.5		<0.5
1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5		<0.5		<0.5
1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5		<0.5		<0.5
Hexachloroethane	67-72-1	0.5	mg/kg	<0.5		<0.5		<0.5
1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5		<0.5		<0.5
Hexachloropropylene	1888-71-7	0.5	mg/kg	<0.5		<0.5		<0.5
Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5		<0.5		<0.5
Hexachlorocyclopentadiene	77-47-4	2.5	mg/kg	<2.5		<2.5		<2.5
Pentachlorobenzene	608-93-5	0.5	mg/kg	<0.5		<0.5		<0.5

Page Work Order	 19 of 32 ES1928334
Client Project	: GOLDER ASSOCIATES · 19126714
FIOJECI	19120/14

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cli	ient sampli	ing date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP075G: Chlorinated Hydrocarbo	ons - Continued							
Hexachlorobenzene (HCB)	118-74-1	1.0	mg/kg	<1.0		<1.0		<1.0
EP075H: Anilines and Benzidines	;							
Aniline	62-53-3	0.5	mg/kg	<0.5		<0.5		<0.5
4-Chloroaniline	106-47-8	0.5	mg/kg	<0.5	<u>A</u>	<0.5		<0.5
2-Nitroaniline	88-74-4	1.0	mg/kg	<1.0		<1.0		<1.0
3-Nitroaniline	99-09-2	1.0	mg/kg	<1.0		<1.0		<1.0
Dibenzofuran	132-64-9	0.5	mg/kg	<0.5		<0.5		<0.5
4-Nitroaniline	100-01-6	0.5	mg/kg	<0.5		<0.5		<0.5
Carbazole	86-74-8	0.5	mg/kg	<0.5		<0.5		<0.5
3.3`-Dichlorobenzidine	91-94-1	0.5	mg/kg	<0.5		<0.5		<0.5
EP075I: Organochlorine Pesticide	es							
alpha-BHC	319-84-6	0.5	mg/kg	<0.5		<0.5		<0.5
beta-BHC	319-85-7	0.5	mg/kg	<0.5		<0.5		<0.5
gamma-BHC	58-89-9	0.5	mg/kg	<0.5		<0.5		<0.5
delta-BHC	319-86-8	0.5	mg/kg	<0.5		<0.5		<0.5
Heptachlor	76-44-8	0.5	mg/kg	<0.5		<0.5		<0.5
Aldrin	309-00-2	0.5	mg/kg	<0.5		<0.5		<0.5
Heptachlor epoxide	1024-57-3	0.5	mg/kg	<0.5		<0.5		<0.5
alpha-Endosulfan	959-98-8	0.5	mg/kg	<0.5		<0.5		<0.5
4.4`-DDE	72-55-9	0.5	mg/kg	<0.5		<0.5		<0.5
Dieldrin	60-57-1	0.5	mg/kg	<0.5		<0.5		<0.5
Endrin	72-20-8	0.5	mg/kg	<0.5		<0.5		<0.5
beta-Endosulfan	33213-65-9	0.5	mg/kg	<0.5		<0.5		<0.5
4.4`-DDD	72-54-8	0.5	mg/kg	<0.5		<0.5		<0.5
Endosulfan sulfate	1031-07-8	0.5	mg/kg	<0.5		<0.5		<0.5
4.4`-DDT	50-29-3	1.0	mg/kg	<1.0		<1.0		<1.0
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.5	mg/kg	<0.5		<0.5		<0.5
	0-2							
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	mg/kg	<0.5		<0.5		<0.5
EP075J: Organophosphorus Pest	ticides							
Dichlorvos	62-73-7	0.5	mg/kg	<0.5		<0.5		<0.5
Dimethoate	60-51-5	0.5	mg/kg	<0.5		<0.5		<0.5
Diazinon	333-41-5	0.5	mg/kg	<0.5		<0.5		<0.5
Chlorpyrifos-methyl	5598-13-0	0.5	mg/kg	<0.5		<0.5		<0.5

Page : 20 of 32 Work Order : ES1928334 Client : GOLDER ASSOCIATES Project : 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cl	ient samplii	ng date / time	02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP075J: Organophosphorus Pesticides	s - Continued							
Malathion	121-75-5	0.5	mg/kg	<0.5		<0.5		<0.5
Fenthion	55-38-9	0.5	mg/kg	<0.5		<0.5		<0.5
Chlorpyrifos	2921-88-2	0.5	mg/kg	<0.5		<0.5		<0.5
Pirimphos-ethyl	23505-41-1	0.5	mg/kg	<0.5		<0.5		<0.5
Chlorfenvinphos	470-90-6	0.5	mg/kg	<0.5		<0.5		<0.5
Prothiofos	34643-46-4	0.5	mg/kg	<0.5		<0.5		<0.5
Ethion	563-12-2	0.5	mg/kg	<0.5		<0.5		<0.5
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg		<10		<10	
C10 - C14 Fraction		50	mg/kg		<50		<50	
C15 - C28 Fraction		100	mg/kg		<100		<100	
C29 - C36 Fraction		100	mg/kg		<100		<100	
^ C10 - C36 Fraction (sum)		50	mg/kg		<50		<50	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fraction	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg		<10		<10	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg		<10		<10	
(F1)								
>C10 - C16 Fraction		50	mg/kg		<50		<50	
>C16 - C34 Fraction		100	mg/kg		<100		<100	
>C34 - C40 Fraction		100	mg/kg		<100		<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg		<50		<50	
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg		<50		<50	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg		<0.2		<0.2	
Toluene	108-88-3	0.5	mg/kg		<0.5		<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg		<0.5		<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg		<0.5		<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg		<0.5		<0.5	
^ Sum of BTEX		0.2	mg/kg		<0.2		<0.2	
^ Total Xylenes		0.5	mg/kg		<0.5		<0.5	
Naphthalene	91-20-3	1	mg/kg		<1		<1	
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		124		122	

Page Work Order	21 of 32 ES1928334
Client	GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9
	Cl	Client sampling date / time		02-Sep-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1928334-007	ES1928334-008	ES1928334-009	ES1928334-010	ES1928334-012
				Result	Result	Result	Result	Result
EP068S: Organochlorine Pesticio	de Surrogate							
Dibromo-DDE	21655-73-2	0.05	%		80.2		118	
EP068T: Organophosphorus Pes	ticide Surrogate							
DEF	78-48-8	0.05	%		68.2		83.4	
EP075(SIM)S: Phenolic Compour	nd Surrogates							
Phenol-d6	13127-88-3	0.5	%		88.1		99.3	
2-Chlorophenol-D4	93951-73-6	0.5	%		77.9		97.8	
2.4.6-Tribromophenol	118-79-6	0.5	%		40.8		75.1	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%		111		92.0	
Anthracene-d10	1719-06-8	0.5	%		77.4		111	
4-Terphenyl-d14	1718-51-0	0.5	%		96.6		119	
EP075S: Acid Extractable Surrog	ates							
2-Fluorophenol	367-12-4	0.5	%	70.7		38.5		8.07
Phenol-d6	13127-88-3	0.5	%	67.6		39.1		10.8
2-Chlorophenol-D4	93951-73-6	0.5	%	66.3		39.2		20.0
2.4.6-Tribromophenol	118-79-6	0.5	%	52.8		30.2		9.52
EP075T: Base/Neutral Extractable	e Surrogates							
Nitrobenzene-D5	4165-60-0	0.5	%	92.0		96.8		66.6
1.2-Dichlorobenzene-D4	2199-69-1	0.5	%	83.2		88.0		81.8
2-Fluorobiphenyl	321-60-8	0.5	%	88.3		92.7		92.9
Anthracene-d10	1719-06-8	0.5	%	96.2		73.6		71.6
4-Terphenyl-d14	1718-51-0	0.5	%	111		98.6		97.3
EP080S: TPH(V)/BTEX Surrogate	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%		96.9		104	
Toluene-D8	2037-26-5	0.2	%		101		107	
4-Bromofluorobenzene	460-00-4	0.2	%		94.1		108	

Page Work Order	22 of 32 ES1928334
Client	GOLDER ASSOCIATES
Project	<u>:</u> 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Trans01	QCA100	TS	ТВ	Trip Spike Control
	C	lient samplii	ng date / time	02-Sep-2019 00:00	02-Sep-2019 00:00	[28-Aug-2019]	[30-Aug-2019]	[28-Aug-2019]
Compound	CAS Number	LOR	Unit	ES1928334-013	ES1928334-016	ES1928334-018	ES1928334-019	ES1928334-020
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-	-110°C)							
Moisture Content		1.0	%	6.2	12.8			
EA200: AS 4964 - 2004 Identification of	Asbestos in Soils	5						
Asbestos Detected	1332-21-4	0.1	g/kg	Yes				
Asbestos (Trace)	1332-21-4	5	Fibres	No	<u> </u>			
Asbestos Type	1332-21-4	-		Ch + Am				
Sample weight (dry)		0.01	g	749				
Synthetic Mineral Fibre		0.1	g/kg	No				
Organic Fibre		0.1	g/kg	No				
APPROVED IDENTIFIER:		-		A. SMYLIE				
EA200N: Asbestos Quantification (non	-NATA)							
Ø Asbestos (Fines and Fibrous	1332-21-4	0.0004	g	<0.0004				
<7mm)								
Ø Asbestos (Fines and Fibrous FA+AF)		0.001	% (w/w)	<0.001				
ØAsbestos Containing Material	1332-21-4	0.1	g	6.6				
Ø Asbestos Containing Material	1332-21-4	0.01	% (w/w)	0.13				
(as 15% Asbestos in ACM >7mm)								
Ø Weight Used for % Calculation		0.0001	kg	0.749				
ø Fibrous Asbestos >7mm		0.0004	g	<0.0004				
EG005(ED093)T: Total Metals by ICP-A	ES							
Arsenic	7440-38-2	5	mg/kg	<5	6			
Cadmium	7440-43-9	1	mg/kg	<1	<1			
Chromium	7440-47-3	2	mg/kg	10	7			
Copper	7440-50-8	5	mg/kg	20	7			
Lead	7439-92-1	5	mg/kg	53	9			
Nickel	7440-02-0	2	mg/kg	3	4			
Zinc	7440-66-6	5	mg/kg	63	21			
EG035T: Total Recoverable Mercury by	-							
Mercury	7439-97-6	0.1	mg/kg	2.2	0.9			
EK025SF: Free CN by Segmented Flow	v Analyser							
Free Cyanide		1	mg/kg		<1			
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg		<20			
EP066: Polychlorinated Biphenyls (PCI	B)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1			

Page : 23 of 32 Work Order : ES1928334 Client : GOLDER ASSOCIATES Project : 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Trans01	QCA100	TS	ТВ	Trip Spike Control
	Cl	ient sampli	ng date / time	02-Sep-2019 00:00	02-Sep-2019 00:00	[28-Aug-2019]	[30-Aug-2019]	[28-Aug-2019]
Compound	CAS Number	LOR	Unit	ES1928334-013	ES1928334-016	ES1928334-018	ES1928334-019	ES1928334-020
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticid	es (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05			
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05			
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05			
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05			
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05			
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05			
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05			
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05			
^ Total Chlordane (sum)		0.05	mg/kg	0.14	<0.05			
trans-Chlordane	5103-74-2	0.05	mg/kg	0.08	<0.05			
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05			
cis-Chlordane	5103-71-9	0.05	mg/kg	0.06	<0.05			
Dieldrin	60-57-1	0.05	mg/kg	0.08	<0.05			
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05			
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05			
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05			
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05			
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05			
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05			
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05			
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2			
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05			
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2			
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	0.08	<0.05			
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	<0.05			
	0-2							
EP068B: Organophosphorus Pes	ticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05			
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05			
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2			
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05			
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05			
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05			
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2			
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05			

Page: 24 of 32Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Trans01	QCA100	TS	ТВ	Trip Spike Control
	Cl	ient sampli	ng date / time	02-Sep-2019 00:00	02-Sep-2019 00:00	[28-Aug-2019]	[30-Aug-2019]	[28-Aug-2019]
Compound	CAS Number	LOR	Unit	ES1928334-013	ES1928334-016	ES1928334-018	ES1928334-019	ES1928334-020
				Result	Result	Result	Result	Result
EP068B: Organophosphorus Pes	ticides (OP) - Continued							
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05			
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05			
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2			
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05			
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05			
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05			
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05			
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05			
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05			
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05			
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05			
EP075(SIM)A: Phenolic Compoun	nds							
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5			
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5			
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5			
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1			
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5			
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5			
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5			
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5			
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5			
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5			
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5			
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2			
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5			
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5			
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5			
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5			
Phenanthrene	85-01-8	0.5	mg/kg	2.2	<0.5			
Anthracene	120-12-7	0.5	mg/kg	0.9	<0.5			
Fluoranthene	206-44-0	0.5	mg/kg	4.7	<0.5			
Pyrene	129-00-0	0.5	mg/kg	4.7	<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg	2.2	<0.5			

Page: 25 of 32Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Trans01	QCA100	TS	ТВ	Trip Spike Control
. ,	Cli	ent samplir	ng date / time	02-Sep-2019 00:00	02-Sep-2019 00:00	[28-Aug-2019]	[30-Aug-2019]	[28-Aug-2019]
Compound	CAS Number	LOR	Unit	ES1928334-013	ES1928334-016	ES1928334-018	ES1928334-019	ES1928334-020
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons - Cont	inued						
Chrysene	218-01-9	0.5	mg/kg	2.1	<0.5			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	2.7	<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	0.9	<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg	2.2	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	1.2	<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	1.6	<0.5			
Sum of polycyclic aromatic hydrocarbon		0.5	mg/kg	25.4	<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	2.9	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	3.2	0.6			
[^] Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	3.4	1.2			
EP080/071: Total Petroleum Hydrocar	hons							
C6 - C9 Fraction		10	mg/kg	<10	<10	64	<10	70
C10 - C14 Fraction		50	mg/kg	<50	<50			
C15 - C28 Fraction		100	mg/kg	100	<100			
C29 - C36 Fraction		100	mg/kg	100	240			
^ C10 - C36 Fraction (sum)		50	mg/kg	200	240			
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Eraction						
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	78	<10	84
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	38	<10	41
(F1)	00_01001212							
>C10 - C16 Fraction		50	mg/kg	<50	<50			
>C16 - C34 Fraction		100	mg/kg	170	<100			
>C34 - C40 Fraction		100	mg/kg	<100	280			
>C10 - C40 Fraction (sum)		50	mg/kg	170	280			
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50			
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.2	<0.2	0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	17.4	<0.5	19.3
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	2.7	<0.5	2.8
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	14.4	<0.5	15.2
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	5.4	<0.5	5.7
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	40.1	<0.2	43.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	19.8	<0.5	20.9

Page	26 of 32
Work Order	ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	Trans01	QCA100	TS	ТВ	Trip Spike Control
	Cli	ent samplii	ng date / time	02-Sep-2019 00:00	02-Sep-2019 00:00	[28-Aug-2019]	[30-Aug-2019]	[28-Aug-2019]
Compound	CAS Number	LOR	Unit	ES1928334-013	ES1928334-016	ES1928334-018	ES1928334-019	ES1928334-020
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%	112	113			
EP068S: Organochlorine Pesticide S	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	91.2	93.4			
EP068T: Organophosphorus Pestici	ide Surrogate							
DEF	78-48-8	0.05	%	79.2	137			
EP075(SIM)S: Phenolic Compound S	Surrogates							
Phenol-d6	13127-88-3	0.5	%	101	97.7			
2-Chlorophenol-D4	93951-73-6	0.5	%	98.2	96.1			
2.4.6-Tribromophenol	118-79-6	0.5	%	74.3	70.8			
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	91.2	89.8			
Anthracene-d10	1719-06-8	0.5	%	108	109			
4-Terphenyl-d14	1718-51-0	0.5	%	115	117			
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	88.9	107	82.4	108	81.5
Toluene-D8	2037-26-5	0.2	%	79.3	108	94.3	106	93.2
4-Bromofluorobenzene	460-00-4	0.2	%	86.8	108	90.4	119	90.5

Page	: 27 of 32
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Analytical Results

Sub-Matrix: SOLID (Matrix: SOLID)		Client sample ID		ASB01	 	
	Cl	lient sampli	ng date / time	02-Sep-2019 00:00	 	
Compound	CAS Number	LOR	Unit	ES1928334-014	 	
				Result	 	
EA200: AS 4964 - 2004 Identificati	on of Asbestos in bulk	samples				
Asbestos Detected	1332-21-4	0.1	g/kg	Yes	 	
Asbestos Type	1332-21-4	-		Ch	 	
Sample weight (dry)		0.01	g	38.0	 	
APPROVED IDENTIFIER:		-		A. RISTOSKI	 	

Page 121

Page: 28 of 32Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RB	 	
	C	lient sampli	ng date / time	02-Sep-2019 00:00	 	
Compound	CAS Number	LOR	Unit	ES1928334-017	 	
				Result	 	
EG020T: Total Metals by ICP-MS	S					
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
EG035T: Total Recoverable Me	rcury by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP075(SIM)B: Polynuclear Aron	natic Hydrocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	µg/L	<1.0	 	
Pyrene	129-00-0	1.0	µg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydro	ocarbons	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP080/071: Total Petroleum Hyd	drocarbons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	µg/L	<50	 	

Page: 29 of 32Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RB		 	
	Cli	ent samplii	ng date / time	02-Sep-2019 00:00		 	
Compound	CAS Number	LOR	Unit	ES1928334-017		 	
				Result		 	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractior	ıs				
C6 - C10 Fraction	C6_C10	20	µg/L	<20		 	
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	µg/L	<20	-	 	
>C10 - C16 Fraction		100	µg/L	<100		 	
>C16 - C34 Fraction		100	µg/L	<100		 	
>C34 - C40 Fraction		100	µg/L	<100		 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100		 	
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100		 	
(F2)							
EP080: BTEXN							
Benzene	71-43-2	1	µg/L	<1		 	
Toluene	108-88-3	2	µg/L	<2		 	
Ethylbenzene	100-41-4	2	µg/L	<2		 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2		 	
ortho-Xylene	95-47-6	2	µg/L	<2		 	
^ Total Xylenes		2	µg/L	<2		 	
^ Sum of BTEX		1	µg/L	<1		 	
Naphthalene	91-20-3	5	µg/L	<5		 	
EP075(SIM)S: Phenolic Compound Sur	rogates						
Phenol-d6	13127-88-3	1.0	%	17.9		 	
2-Chlorophenol-D4	93951-73-6	1.0	%	41.0		 	
2.4.6-Tribromophenol	118-79-6	1.0	%	98.2		 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	96.4		 	
Anthracene-d10	1719-06-8	1.0	%	71.5		 	
4-Terphenyl-d14	1718-51-0	1.0	%	88.4		 	
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	113		 	
Toluene-D8	2037-26-5	2	%	121		 	
4-Bromofluorobenzene	460-00-4	2	%	104		 	

Page	: 30 of 32
Work Order	: ES1928334
Client	GOLDER ASSOCIATES
Project	: 19126714

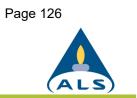
Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results				
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils					
EA200: Description	BH01_0.1 - 02-Sep-2019 00:00	Mid brown soil.				
EA200: Description	BH03_0.1 - 02-Sep-2019 00:00	Mid brown soil.				
EA200: Description	BH05_0.1 - 02-Sep-2019 00:00	Mid brown soil.				
EA200: Description	Trans01 - 02-Sep-2019 00:00	Mid brown soil containing one piece of asbestos cement sheeting approximately 40x40x5mm.				
Sub-Matrix: SOLID						
Method: Compound	Client sample ID - Client sampling date / time	Analytical Results				
EA200: AS 4964 - 2004 Identification of Asbestos in bulk samples						
EA200: Description	ASB01 - 02-Sep-2019 00:00	Several pieces of asbestos cement sheeting approximately 55x30x5mm.				

Page	31 of 32
Work Order	ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714


Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	/ Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate	e		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surro	gate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogate	es		-
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	120
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates		-	
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP075S: Acid Extractable Surrogates			
2-Fluorophenol	367-12-4	29	149
Phenol-d6	13127-88-3	32	128
2-Chlorophenol-D4	93951-73-6	32	128
2.4.6-Tribromophenol	118-79-6	13	121
EP075T: Base/Neutral Extractable Surrogate	s		
Nitrobenzene-D5	4165-60-0	33	125
1.2-Dichlorobenzene-D4	2199-69-1	34	108
2-Fluorobiphenyl	321-60-8	35	121
Anthracene-d10	1719-06-8	35	123
4-Terphenyl-d14	1718-51-0	33	125
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130
Sub-Matrix: WATER		Recover	/ Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogate			
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113

Page	: 32 of 32
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: WATER		Recovery	Limits (%)		
Compound	CAS Number	Low	High		
EP075(SIM)T: PAH Surrogates - Continued					
4-Terphenyl-d14	1718-51-0	32	112		
EP080S: TPH(V)/BTEX Surrogates					
1.2-Dichloroethane-D4	17060-07-0	71	137		
Toluene-D8	2037-26-5	79	131		
4-Bromofluorobenzene	460-00-4	70	128		

: ES1928334

QUALITY CONTROL REPORT Page : 1 of 20 Laboratory : Environmental Division Sydney

Client	: GOLDER ASSOCIATES	Laboratory	: Environmental Division Syd	ney
Contact	: MR THEODORE ADCOCK	Contact	: Customer Services ES	
Address	ELEVEL 1, 124 PACIFIC HIGHWAY	Address	: 277-289 Woodpark Road S	mithfield NSW Australia 2164
	ST LEONARDS NSW, AUSTRALIA 2065			
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: 19126714	Date Samples Received	: 04-Sep-2019	ANIIIIII
Order number	: PO22402	Date Analysis Commenced	: 06-Sep-2019	
C-O-C number	:	Issue Date	: 11-Sep-2019	
Sampler	: THEODORE ADCOCK			Hac-MRA NATA
Site	: Waverton Bowling Club			
Quote number	: EN/002/18 National BQ			Accreditation No. 825
No. of samples received	: 20			Accredited for compliance with
No. of samples analysed	: 17			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Work Order

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alana Smylie	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Evie Sidarta	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page	: 2 of 20
Work Order	: ES1928334
Client	GOLDER ASSOCIATES
Project	: 19126714

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

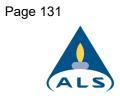
RPD = Relative Percentage Difference

= Indicates failed QC

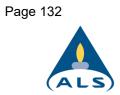
Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

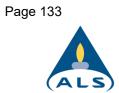
ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
G005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2568948)							
ES1928039-052	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
	EG005T: Chromium	7440-47-3	2	mg/kg	75	66	13.1	0% - 20%	
		EG005T: Nickel	7440-02-0	2	mg/kg	2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	<5	0.00	No Limit
	EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	9	8	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	<5	<5	0.00	No Limit
ES1928515-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	291	312	6.71	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	70	74	6.40	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	6	18.2	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	54	84	44.5	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	44	35	22.7	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	305	# 388	24.0	0% - 20%
A055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 2568951)							
S1928039-056	Anonymous	EA055: Moisture Content		0.1	%	3.7	4.1	12.1	No Limit
EW1903881-003	Anonymous	EA055: Moisture Content		0.1	%	14.5	14.4	0.00	0% - 50%
A055: Moisture Co	ontent (Dried @ 105-110	°C) (QC Lot: 2571467)							
ES1928334-006	BH03_0.5	EA055: Moisture Content		0.1	%	14.3	15.0	4.23	0% - 20%
ES1928500-008	Anonymous	EA055: Moisture Content		0.1	%	8.8	8.0	8.81	No Limit
G035T: Total <u>Reco</u>	overable Mercury by Fl	MS (QC Lot: 2568949)							
ES1928039-052	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1928515-002	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	0.2	0.00	No Limit


Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK025SF: Free CN b	by Segmented Flow Analyse	r (QC Lot: 2575139) - continued							
ES1928334-001	BH01_0.1	EK025SF: Free Cyanide		1	mg/kg	<1	<1	0.00	No Limit
EK055: Ammonia as	EK055: Ammonia as N (QC Lot: 2573726)								
ES1928334-001	BH01_0.1	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EP066: Polychlorina	ted Biphenyls (PCB) (QC Lo	ot: 2567433)							
ES1928334-001	BH01_0.1	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP068A: Organochlo	orine Pesticides (OC) (QC L								
ES1928334-001	BH01_0.1	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	_	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP068B: Organopho	osphorus Pesticides (OP) (Q				0.0				
ES1928334-001	BH01 0.1	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	_	EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
I		Li ooo. Diomophoo outyi							

Page	: 4 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714



ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P068B: Organopho	osphorus Pesticides (O	P) (QC Lot: 2567432) - continued							
S1928334-001	BH01_0.1	EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
P075(SIM)A: Pheno	olic Compounds (QC L	.ot: 2567431)		7					
S1928334-001	BH01_0.1	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	-	EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.00	No Limit
		EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
P075(SIM)B: Polvn	uclear Aromatic Hvdro	carbons (QC Lot: 2567431)							
S1928334-001	BH01_0.1	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	_	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3		33				
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit


ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P075(SIM)B: Polyn	uclear Aromatic Hydrod	carbons (QC Lot: 2567431) - continued							
ES1928334-001	BH01_0.1	EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P075A: Phenolic C	ompounds (QC Lot: 25	67428)			<u> </u>				
ES1928334-003	BH02_0.1	EP075: Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 3- & 4-Methylphenol	1319-77-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Pentachlorophenol	87-86-5	1	mg/kg	<1	<1	0.00	No Limit
P075B: Polvnuclea	r Aromatic Hydrocarbo	ns (QC Lot: 2567428)							
S1928334-003	BH02 0.1	EP075: Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2-Methylnaphthalene	91-57-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2-Chloronaphthalene	91-58-7	0.5	mg/kg	< 0.5	<0.5	0.00	No Limit
		EP075: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: N-2-Fluorenyl Acetamide	53-96-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 3-Methylcholanthrene	56-49-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2	1	mg/kg	<1	<1	0.00	No Limit
			203-39-2 207-08-9						
P075C: Phthalate E	Esters (QC Lot: 256742	B)							
S1928334-003	BH02_0.1	EP075: Dimethyl phthalate	131-11-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 6 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

ib-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP075C: Phthalate E	Esters (QC Lot: 256742	8) - continued								
ES1928334-003	BH02_0.1	EP075: Diethyl phthalate	84-66-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Di-n-butyl phthalate	84-74-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Butyl benzyl phthalate	85-68-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Di-n-octylphthalate	117-84-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
P075D: Nitrosamin	es (QC Lot: 2567428)									
ES1928334-003	BH02_0.1	EP075: N-Nitrosomethylethylamine	10595-95-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
	_	EP075: N-Nitrosodiethylamine	55-18-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: N-Nitrosopyrrolidine	930-55-2	0.5	mg/kg	<1.0	<1.0	0.00	No Limit	
		EP075: N-Nitrosomorpholine	59-89-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: N-Nitrosodi-n-propylamine	621-64-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: N-Nitrosopiperidine	100-75-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: N-Nitrosodibutylamine	924-16-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: N-Nitrosodiphenyl & Diphenylamine	86-30-6	0.5	mg/kg	<1.0	<1.0	0.00	No Limit	
			122-39-4		0.0					
		EP075: Methapyrilene	91-80-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
P075E: Nitroaroma	tics and Ketones (QC									
S1928334-003	BH02 0.1	EP075: 2-Picoline	109-06-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
	51102_0.1	EP075: Acetophenone	98-86-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Nitrobenzene	98-95-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Isophorone	78-59-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: 2.6-Dinitrotoluene	606-20-2	0.5	mg/kg	<1.0	<1.0	0.00	No Limit	
		EP075: 2.4-Dinitrotoluene	121-14-2	0.5	mg/kg	<1.0	<1.0	0.00	No Limit	
		EP075: 1-Naphthylamine	134-32-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: 4-Nitroquinoline-N-oxide	56-57-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: 5-Nitro-o-toluidine	99-55-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: 1.3.5-Trinitrobenzene	99-35-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Phenacetin	62-44-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: 4-Aminobiphenyl	92-67-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Pentachloronitrobenzene	82-68-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Pronamide	23950-58-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Dimethylaminoazobenzene	60-11-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Chlorobenzilate	510-15-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Azobenzene	103-33-3	1	mg/kg	<1	<1	0.00	No Limit	
	(001 -4: 0507400)	EF075. Azobelizelle	100 00 0	1	ing/kg	-1	-1	0.00		
	(QC Lot: 2567428)			0.5	and of the set	-0 5	-0 F	0.00	Nie 1 Seett	
S1928334-003	BH02_0.1	EP075: Bis(2-chloroethyl) ether	111-44-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: Bis(2-chloroethoxy) methane	111-91-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: 4-Chlorophenyl phenyl ether	7005-72-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075: 4-Bromophenyl phenyl ether	101-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	

Page	: 7 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075G: Chlorinated	d Hydrocarbons (QC L	ot: 2567428) - continued							
ES1928334-003	BH02_0.1	EP075: 1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Hexachloroethane	67-72-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Hexachloropropylene	1888-71-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Pentachlorobenzene	608-93-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Hexachlorobenzene (HCB)	118-74-1	0.5	mg/kg	<1.0	<1.0	0.00	No Limit
		EP075: Hexachlorocyclopentadiene	77-47-4	2.5	mg/kg	<2.5	<2.5	0.00	No Limit
EP075H: Anilines an	d Benzidines (QC Lot	: 2567428)							
ES1928334-003	BH02_0.1	EP075: Aniline	62-53-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 4-Chloroaniline	106-47-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 2-Nitroaniline	88-74-4	0.5	mg/kg	<1.0	<1.0	0.00	No Limit
		EP075: 3-Nitroaniline	99-09-2	0.5	mg/kg	<1.0	<1.0	0.00	No Limit
		EP075: Dibenzofuran	132-64-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 4-Nitroaniline	100-01-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Carbazole	86-74-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 3.3`-Dichlorobenzidine	91-94-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075I: Organochlo	rine Pesticides (QC Lo	ot: 2567428)							
ES1928334-003	BH02_0.1	EP075: alpha-BHC	319-84-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: beta-BHC	319-85-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: gamma-BHC	58-89-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: delta-BHC	319-86-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Heptachlor	76-44-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Aldrin	309-00-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Heptachlor epoxide	1024-57-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: alpha-Endosulfan	959-98-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 4.4`-DDE	72-55-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Dieldrin	60-57-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Endrin	72-20-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: beta-Endosulfan	33213-65-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 4.4`-DDD	72-54-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Endosulfan sulfate	1031-07-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: 4.4`-DDT	50-29-3	0.5	mg/kg	<1.0	<1.0	0.00	No Limit
EP075J: Organopho	sphorus Pesticides (C	QC Lot: 2567428)							
ES1928334-003	BH02_0.1	EP075: Dichlorvos	62-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Dimethoate	60-51-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Diazinon	333-41-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Chlorpyrifos-methyl	5598-13-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 8 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075J: Organoph	osphorus Pesticides (QC Lot: 2567428) - continued							
ES1928334-003	BH02_0.1	EP075: Malathion	121-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Fenthion	55-38-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Chlorpyrifos	2921-88-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Pirimphos-ethyl	23505-41-1	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Chlorfenvinphos	470-90-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Prothiofos	34643-46-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075: Ethion	563-12-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total P	Petroleum Hydrocarbons	s (QC Lot: 2567430)							
ES1928334-001	BH01_0.1	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	190	130	34.9	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total P	Petroleum Hydrocarbons	s (QC Lot: 2568240)							
ES1928334-001	BH01_0.1	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1928334-016	 QCA100	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	Recoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2567430)							
ES1928334-001	BH01 0.1	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	220	150	34.2	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total R	Recoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2568240)							
ES1928334-001	BH01_0.1	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1928334-016	 QCA100	EP080: C6 - C10 Fraction	 C6 C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (Q	C Lot: 2568240)								
ES1928334-001	BH01 0.1	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
	-	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1928334-016	QCA100	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	1	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
	als by ICP-MS (QC Lot:							. ,	

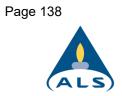
Page	: 9 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Meta	Is by ICP-MS (QC Lot	: 2570760) - continued							
EN1906107-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.003	0.002	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.278	0.274	1.37	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.008	0.007	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.248	0.245	1.52	0% - 20%
ES1928443-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
EG035T: Total Rec	overable Mercury by F	IMS (QC Lot: 2570766)							
EN1906134-002	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
ES1928304-002	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbon	s (QC Lot: 2570216)							
EB1923089-004	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
ES1928451-001	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 2570216)							
EB1923089-004	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
ES1928451-001	Anonymous	EP080: C6 - C10 Fraction	 C6_C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	Lot: 2570216)								
EB1923089-004	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit
ES1928451-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit

Page	: 10 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.


Sub-Matrix: SOIL				Method Blank (MB)				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES(QCLo	ot: 2568948)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	103	86	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	101	83	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	93.7	76	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	98.4	86	120
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	101	80	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	104	87	123
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	106	80	122
EG035T: Total Recoverable Mercury by FIMS(Q	CLot: 2568949)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	83.1	70	105
EK025SF: Free CN by Segmented Flow Analyse	(QCLot: 2575139)							
EK025SF: Free Cyanide		1	mg/kg	<1	40 mg/kg	123	93	123
EK055: Ammonia as N (QCLot: 2573726)								
EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	125 mg/kg	92.6	84	104
EP066: Polychlorinated Biphenyls (PCB) (QCLot	. 2567433)							
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	118	62	126
EP068A: Organochlorine Pesticides (OC) (QCLo	t: 2567432)				0.0			
EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	94.9	69	113
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	94.4	65	117
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	102	67	119
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	101	68	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	106	65	117
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	96.1	67	115
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	106	69	115
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	100	62	118
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	97.9	63	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	104	66	116
EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	97.2	64	116
EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	92.3	66	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	98.8	67	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.4	67	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	96.9	69	115
EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	94.2	69	121
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	94.6	56	120
EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	97.3	62	124

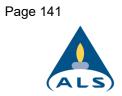
Page	: 11 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCLot: 2	567432) - continued								
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	92.2	66	120	
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	102	64	122	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	86.0	54	130	
EP068B: Organophosphorus Pesticides (OP) (QCLc	ot: 2567432)								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	77.3	59	119	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.6	62	128	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	90.1	54	126	
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	97.0	67	119	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	96.5	70	120	
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	92.0	72	120	
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	87.9	68	120	
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	68	122	
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	87.3	69	117	
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	90.8	76	118	
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	85.7	64	122	
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	90.9	70	116	
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	80.5	69	121	
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	89.1	66	118	
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	108	68	124	
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	96.3	62	112	
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	83.1	68	120	
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	93.0	65	127	
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	67.6	41	123	
EP075(SIM)A: Phenolic Compounds (QCLot: 256743	31)								
EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	6 mg/kg	101	71	125	
EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	6 mg/kg	98.6	72	124	
EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	6 mg/kg	87.4	71	123	
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	12 mg/kg	90.7	67	127	
EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	6 mg/kg	62.3	54	114	
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	6 mg/kg	89.3	68	126	
EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	6 mg/kg	85.7	66	120	
EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	6 mg/kg	87.1	70	120	
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	6 mg/kg	81.7	70	116	
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	6 mg/kg	82.2	54	114	
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	6 mg/kg	84.6	60	114	
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	12 mg/kg	19.8	10	57	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 2567431)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	103	77	125	

Page	: 12 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	ot: 2567431) - c	ontinued						
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	101	72	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	106	73	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	101	72	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	107	75	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	95.8	77	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	108	73	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	106	74	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	99.0	69	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	102	75	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	105	68	116
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	119	74	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	103	70	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	112	61	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	110	62	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	110	63	121
EP075A: Phenolic Compounds (QCLot: 2567428)								
EP075: Phenol	108-95-2	0.5	mg/kg	<0.5	1.5 mg/kg	83.7	64	114
EP075: 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	1.5 mg/kg	75.4	57	115
EP075: 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	1.5 mg/kg	76.8	55	117
EP075: 3- & 4-Methylphenol	1319-77-3	0.5	mg/kg	<0.5	1.5 mg/kg	78.5	46	122
EP075: 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	1.5 mg/kg	73.7	47	117
EP075: 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	1.5 mg/kg	61.7	14	108
EP075: 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	1.5 mg/kg	72.4	47	105
EP075: 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	1.5 mg/kg	93.2	48	110
EP075: 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	1.5 mg/kg	95.6	57	113
EP075: 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	1.5 mg/kg	84.7	49	109
EP075: 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	1.5 mg/kg	74.5	49	107
EP075: Pentachlorophenol	87-86-5	1	mg/kg	<1	3 mg/kg	15.0	12	76
EP075B: Polynuclear Aromatic Hydrocarbons (QCLot: 25	67428)							
EP075: Naphthalene	91-20-3	0.5	mg/kg	<0.5	1.5 mg/kg	104	62	118
EP075: 2-Methylnaphthalene	91-57-6	0.5	mg/kg	<0.5	1.5 mg/kg	99.8	58	116
EP075: 2-Chloronaphthalene	91-58-7	0.5	mg/kg	<0.5	1.5 mg/kg	95.0	54	112
EP075: Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	1.5 mg/kg	101	56	114
EP075: Acenaphthene	83-32-9	0.5	mg/kg	<0.5	1.5 mg/kg	101	62	112
EP075: Fluorene	86-73-7	0.5	mg/kg	<0.5	1.5 mg/kg	98.8	59	115
EP075: Phenanthrene	85-01-8	0.5	mg/kg	<0.5	1.5 mg/kg	98.0	63	113
EP075: Anthracene	120-12-7	0.5	mg/kg	<0.5	1.5 mg/kg	99.0	57	111
EP075: Fluoranthene	206-44-0	0.5	mg/kg	<0.5	1.5 mg/kg	101	58	114

Page	: 13 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714


Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075B: Polynuclear Aromatic Hydrocarbons(Q	CLot: 2567428) - continue	d							
EP075: Pyrene	129-00-0	0.5	mg/kg	<0.5	1.5 mg/kg	102	57	117	
EP075: N-2-Fluorenyl Acetamide	53-96-3	0.5	mg/kg	<0.5	1.5 mg/kg	107	58	114	
EP075: Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	1.5 mg/kg	102	59	115	
EP075: Chrysene	218-01-9	0.5	mg/kg	<0.5	1.5 mg/kg	109	61	117	
EP075: Benzo(b+j) & Benzo(k)fluoranthene	205-99-2	1	mg/kg	<1	3 mg/kg	99.6	57	119	
	207-08-9								
EP075: 7.12-Dimethylbenz(a)anthracene	57-97-6	0.5	mg/kg	<0.5	1.5 mg/kg	98.3	48	106	
P075: Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	1.5 mg/kg	103	56	116	
P075: 3-Methylcholanthrene	56-49-5	0.5	mg/kg	<0.5	1.5 mg/kg	92.4	50	116	
EP075: Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	1.5 mg/kg	97.0	55	117	
EP075: Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	1.5 mg/kg	95.2	53	119	
P075: Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	1.5 mg/kg	101	56	120	
EP075C: Phthalate Esters (QCLot: 2567428)									
EP075: Dimethyl phthalate	131-11-3	0.5	mg/kg	<0.5	1.5 mg/kg	102	60	118	
P075: Diethyl phthalate	84-66-2	0.5	mg/kg	<0.5	1.5 mg/kg	100	65	115	
P075: Di-n-butyl phthalate	84-74-2	0.5	mg/kg	<0.5	1.5 mg/kg	100	65	121	
P075: Butyl benzyl phthalate	85-68-7	0.5	mg/kg	<0.5	1.5 mg/kg	104	62	116	
P075: bis(2-ethylhexyl) phthalate	117-81-7		mg/kg		1.5 mg/kg	98.3	69	133	
P075: Di-n-octylphthalate	117-84-0	0.5	mg/kg	<0.5	1.5 mg/kg	97.6	62	124	
EP075D: Nitrosamines (QCLot: 2567428)									
P075: N-Nitrosomethylethylamine	10595-95-6	0.5	mg/kg	<0.5	1.5 mg/kg	78.0	39	124	
EP075: N-Nitrosodiethylamine	55-18-5	0.5	mg/kg	<0.5	1.5 mg/kg	105	59	117	
P075: N-Nitrosopyrrolidine	930-55-2	0.5	mg/kg	<0.5	1.5 mg/kg	84.4	53	125	
P075: N-Nitrosomorpholine	59-89-2	0.5	mg/kg	<0.5	1.5 mg/kg	86.0	65	121	
P075: N-Nitrosodi-n-propylamine	621-64-7	0.5	mg/kg	<0.5	1.5 mg/kg	85.4	59	123	
P075: N-Nitrosopiperidine	100-75-4	0.5	mg/kg	<0.5	1.5 mg/kg	81.0	57	115	
P075: N-Nitrosodibutylamine	924-16-3	0.5	mg/kg	<0.5	1.5 mg/kg	96.2	57	119	
P075: N-Nitrosodiphenyl & Diphenylamine	86-30-6	0.5	mg/kg	<0.6	3 mg/kg	97.9	42	112	
	122-39-4								
P075: Methapyrilene	91-80-5	0.5	mg/kg	<0.5	1.5 mg/kg	55.4	16	123	
P075E: Nitroaromatics and Ketones (QCLot: 25	67428)								
P075: 2-Picoline	109-06-8	0.5	mg/kg	<0.5	1.5 mg/kg	91.9	27	129	
P075: Acetophenone	98-86-2	0.5	mg/kg	<0.5	1.5 mg/kg	84.0	60	116	
P075: Nitrobenzene	98-95-3	0.5	mg/kg	<0.5	1.5 mg/kg	84.4	65	119	
P075: Isophorone	78-59-1	0.5	mg/kg	<0.5	1.5 mg/kg	81.4	62	116	
P075: 2.6-Dinitrotoluene	606-20-2	0.5	mg/kg	<0.5	1.5 mg/kg	100	58	118	
P075: 2.4-Dinitrotoluene	121-14-2	0.5	mg/kg	<0.5	1.5 mg/kg	98.4	59	115	
EP075: 1-Naphthylamine	134-32-7	0.5	mg/kg	<0.5	1.5 mg/kg	52.3	18	112	

Page	: 14 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075E: Nitroaromatics and Ketones (QCLot: 25674	28) - continued								
EP075: 4-Nitroquinoline-N-oxide	56-57-5	0.5	mg/kg	<0.5	1.5 mg/kg	76.8	10	87	
EP075: 5-Nitro-o-toluidine	99-55-8	0.5	mg/kg	<0.5	1.5 mg/kg	# 108	48	99	
EP075: Azobenzene	103-33-3	1	mg/kg	<1	1.5 mg/kg	101	62	118	
EP075: 1.3.5-Trinitrobenzene	99-35-4	0.5	mg/kg	<0.5	1.5 mg/kg	77.2	36	114	
EP075: Phenacetin	62-44-2	0.5	mg/kg	<0.5	1.5 mg/kg	105	62	114	
EP075: 4-Aminobiphenyl	92-67-1	0.5	mg/kg	<0.5	1.5 mg/kg	86.5	36	102	
EP075: Pentachloronitrobenzene	82-68-8	0.5	mg/kg	<0.5	1.5 mg/kg	95.4	56	110	
EP075: Pronamide	23950-58-5	0.5	mg/kg	<0.5	1.5 mg/kg	96.4	54	110	
EP075: Dimethylaminoazobenzene	60-11-7	0.5	mg/kg	<0.5	1.5 mg/kg	96.2	48	108	
EP075: Chlorobenzilate	510-15-6	0.5	mg/kg	<0.5	1.5 mg/kg	99.8	57	112	
EP075F: Haloethers (QCLot: 2567428)									
EP075: Bis(2-chloroethyl) ether	111-44-4	0.5	mg/kg	<0.5	1.5 mg/kg	83.7	63	121	
EP075: Bis(2-chloroethoxy) methane	111-91-1	0.5	mg/kg	<0.5	1.5 mg/kg	81.4	59	115	
EP075: 4-Chlorophenyl phenyl ether	7005-72-3	0.5	mg/kg	<0.5	1.5 mg/kg	97.3	58	112	
EP075: 4-Bromophenyl phenyl ether	101-55-3	0.5	mg/kg	<0.5	1.5 mg/kg	94.5	58	110	
EP075G: Chlorinated Hydrocarbons (QCLot: 256742	8)								
EP075: 1.3-Dichlorobenzene	541-73-1	0.5	mg/kg	<0.5	1.5 mg/kg	97.1	58	112	
EP075: 1.4-Dichlorobenzene	106-46-7	0.5	mg/kg	<0.5	1.5 mg/kg	98.1	58	116	
EP075: 1.2-Dichlorobenzene	95-50-1	0.5	mg/kg	<0.5	1.5 mg/kg	79.2	57	115	
EP075: Hexachloroethane	67-72-1	0.5	mg/kg	<0.5	1.5 mg/kg	80.6	54	116	
EP075: 1.2.4-Trichlorobenzene	120-82-1	0.5	mg/kg	<0.5	1.5 mg/kg	83.6	63	108	
EP075: Hexachloropropylene	1888-71-7	0.5	mg/kg	<0.5	1.5 mg/kg	93.3	39	110	
EP075: Hexachlorobutadiene	87-68-3	0.5	mg/kg	<0.5	1.5 mg/kg	97.0	59	117	
EP075: Hexachlorocyclopentadiene	77-47-4	2.5	mg/kg	<2.5	1.5 mg/kg	47.4	24	108	
EP075: Pentachlorobenzene	608-93-5	0.5	mg/kg	<0.5	1.5 mg/kg	97.4	57	109	
EP075: Hexachlorobenzene (HCB)	118-74-1	0.5	mg/kg	<0.5	1.5 mg/kg	96.4	59	111	
EP075H: Anilines and Benzidines (QCLot: 2567428)									
EP075: Aniline	62-53-3	0.5	mg/kg	<0.5	1.5 mg/kg	80.7	13	108	
EP075: 4-Chloroaniline	106-47-8	0.5	mg/kg	<0.5	1.5 mg/kg	56.5	21	99	
EP075: 2-Nitroaniline	88-74-4	0.5	mg/kg	<0.5	1.5 mg/kg	104	52	112	
EP075: 3-Nitroaniline	99-09-2	0.5	mg/kg	<0.5	1.5 mg/kg	87.5	32	94	
EP075: Dibenzofuran	132-64-9	0.5	mg/kg	<0.5	1.5 mg/kg	101	60	110	
EP075: 4-Nitroaniline	100-01-6	0.5	mg/kg	<0.5	1.5 mg/kg	99.2	42	112	
EP075: Carbazole	86-74-8	0.5	mg/kg	<0.5	1.5 mg/kg	98.2	59	111	
EP075: 3.3`-Dichlorobenzidine	91-94-1	0.5	mg/kg	<0.5	1.5 mg/kg	91.2	23	113	
							-		
EP075I: Organochlorine Pesticides (QCLot: 2567428)	319-84-6	0.5	mg/kg	<0.5	1.5 mg/kg	101	63	113	
EP075: alpha-BHC EP075: beta-BHC	319-85-7	0.5	mg/kg	<0.5	1.5 mg/kg	87.5	57	113	

Page	: 15 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Method: Compound EP0751: Organochlorine Pesticides (QCLot: 2567428	CAS Number			Report	0.11			
EP075I: Organochlorine Pesticides (QCLot: 2567428	CAS Number			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
		LOR	Unit	Result	Concentration	LCS	Low	High
-DOZE: commo BUC	8) - continued							
EP075: gamma-BHC	58-89-9	0.5	mg/kg	<0.5	1.5 mg/kg	97.1	61	117
EP075: delta-BHC	319-86-8	0.5	mg/kg	<0.5	1.5 mg/kg	96.2	64	118
EP075: Heptachlor	76-44-8	0.5	mg/kg	<0.5	1.5 mg/kg	93.9	55	115
EP075: Aldrin	309-00-2	0.5	mg/kg	<0.5	1.5 mg/kg	96.0	61	115
EP075: Heptachlor epoxide	1024-57-3	0.5	mg/kg	<0.5	1.5 mg/kg	98.2	56	118
EP075: alpha-Endosulfan	959-98-8	0.5	mg/kg	<0.5	1.5 mg/kg	93.2	65	125
EP075: 4.4`-DDE	72-55-9	0.5	mg/kg	<0.5	1.5 mg/kg	98.7	60	116
EP075: Dieldrin	60-57-1	0.5	mg/kg	<0.5	1.5 mg/kg	99.1	64	118
EP075: Endrin	72-20-8	0.5	mg/kg	<0.5	1.5 mg/kg	101	53	117
EP075: beta-Endosulfan	33213-65-9	0.5	mg/kg	<0.5	1.5 mg/kg	104	65	115
EP075: 4.4`-DDD	72-54-8	0.5	mg/kg	<0.5	1.5 mg/kg	98.5	62	118
EP075: Endosulfan sulfate	1031-07-8	0.5	mg/kg	<0.5	1.5 mg/kg	116	63	129
EP075: 4.4`-DDT	50-29-3	0.5	mg/kg	<0.5	1.5 mg/kg	99.1	46	122
EP075: Sum of DDD + DDE + DDT	72-54-8/72-5	0.5	mg/kg	<0.5				
	5-9/50-2							
EP075: Sum of Aldrin + Dieldrin	309-00-2/60-	0.5	mg/kg	<0.5				
	57-1							
EP075J: Organophosphorus Pesticides (QCLot: 256	67428)							
EP075: Dichlorvos	62-73-7	0.5	mg/kg	<0.5	1.5 mg/kg	# 27.7	46	112
EP075: Dimethoate	60-51-5	0.5	mg/kg	<0.5	1.5 mg/kg	100	63	119
EP075: Diazinon	333-41-5	0.5	mg/kg	<0.5	1.5 mg/kg	99.9	68	134
EP075: Chlorpyrifos-methyl	5598-13-0	0.5	mg/kg	<0.5	1.5 mg/kg	96.7	60	130
EP075: Malathion	121-75-5	0.5	mg/kg	<0.5	1.5 mg/kg	117	65	127
EP075: Fenthion	55-38-9	0.5	mg/kg	<0.5	1.5 mg/kg	99.9	60	116
EP075: Chlorpyrifos	2921-88-2	0.5	mg/kg	<0.5	1.5 mg/kg	98.6	63	113
EP075: Pirimphos-ethyl	23505-41-1	0.5	mg/kg	<0.5	1.5 mg/kg	95.8	65	115
EP075: Chlorfenvinphos	470-90-6	0.5	mg/kg	<0.5	1.5 mg/kg	87.2	59	103
EP075: Prothiofos	34643-46-4	0.5	mg/kg	<0.5	1.5 mg/kg	102	59	119
EP075: Ethion	563-12-2	0.5	mg/kg	<0.5	1.5 mg/kg	113	62	118
EP080/071: Total Petroleum Hydrocarbons (QCLot: :	2567430)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	112	75	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	107	77	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	112	71	129
EP080/071: Total Petroleum Hydrocarbons (QCLot: :	2568240)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	106	68	128
EP080/071: Total Recoverable Hydrocarbons - NEPM	1 2013 Fractions (OCL	ot: 2567430)						
EP000/071: Total Recoverable Hydrocarbons - NEPW EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	108	77	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	109	74	138

Page	: 16 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Recoverable Hydrocarbons - NEPN	2013 Fractions (QCL	ot: 2567430) - co	ontinued						
P071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	108	63	131	
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCL	ot: 2568240)							
P080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	103	68	128	
EP080: BTEXN (QCLot: 2568240)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	112	62	116	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	107	67	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	110	65	117	
P080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	110	66	118	
	106-42-3								
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	112	68	120	
P080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	110	63	119	
ub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report		
				Report	Spike	Spike Recovery (%)		Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020T: Total Metals by ICP-MS (QCLot: 2570760)									
G020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.3	82	114	
G020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	97.2	84	112	
G020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	94.4	86	116	
G020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.0	83	118	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	91.8	85	115	
G020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	93.6	84	116	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	93.2	79	117	
G035T: Total Recoverable Mercury by FIMS (QCLo	ot: 2570766)								
G035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	93.8	77	111	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(OCL of: 2568557)		-						
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 µg/L	70.6	50	94	
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 µg/L	67.8	64	114	
P075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 µg/L	66.8	62	113	
P075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 µg/L	81.3	64	115	
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 µg/L	73.0	63	116	
P075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 µg/L	69.1	64	116	
P075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 µg/L	86.3	64	118	
P075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 µg/L	87.5	63	118	
P075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 µg/L	74.4	64	117	
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	83.4	63	116	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	µg/L	<1.0	5 µg/L	79.1	62	119	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	5 µg/L	72.1	63	115	

Page	: 17 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLo	ot: 2568557) - c	ontinued							
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	78.2	63	117	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 µg/L	75.0	60	118	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 µg/L	77.7	61	117	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	78.3	59	118	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 25685	58)								
EP071: C10 - C14 Fraction		50	µg/L	<50	2000 µg/L	92.4	56	112	
EP071: C15 - C28 Fraction		100	μg/L	<100	3000 µg/L	97.8	72	113	
EP071: C29 - C36 Fraction		50	μg/L	<50	2000 µg/L	77.7	56	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 25702	16)								
EP080: C6 - C9 Fraction		20	μg/L	<20	260 µg/L	90.0	75	127	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 2568558)							
EP071: >C10 - C16 Fraction		100	μg/L	<100	2500 μg/L	88.5	58	119	
EP071: >C16 - C34 Fraction		100	µg/L	<100	3500 μg/L	87.8	63	110	
EP071: >C34 - C40 Fraction		100	μg/L	<100	1500 μg/L	105	62	121	
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QC	Lot: 2570216)							
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	310 µg/L	86.0	75	127	
EP080: BTEXN (QCLot: 2570216)									
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	93.8	70	122	
EP080: Toluene	108-88-3	2	μg/L	<2	10 µg/L	93.5	69	123	
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	10 µg/L	91.2	70	120	
EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	10 µg/L	86.4	69	121	
	106-42-3		*						
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	88.8	72	122	
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	103	70	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%) Recovery Lir		imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2568948)									
ES1928039-052	ES1928039-052 Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	78.6	70	130			
		EG005T: Cadmium	7440-43-9	50 mg/kg	98.2	70	130			
		EG005T: Chromium	7440-47-3	50 mg/kg	77.1	70	130			
		EG005T: Copper	7440-50-8	250 mg/kg	98.9	70	130			
		EG005T: Lead	7439-92-1	250 mg/kg	96.3	70	130			

Page	: 18 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Vork Order	: ES1928334						
lient roject	· GOLDER ASSOCIATES · 19126714						AI
ojeci	: 19120/14			1			
ub-Matrix: SOIL					atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2568948) - continued						
ES1928039-052 Anonymous	EG005T: Nickel	7440-02-0	50 mg/kg	99.0	70	130	
	EG005T: Zinc	7440-66-6	250 mg/kg	99.9	70	130	
G035T: Total Re	coverable Mercury by FIMS (QCLot: 2568949)						
S1928039-052	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	78.2	70	130
K025SE: Free CN	by Segmented Flow Analyser (QCLot: 2575139)				1		
S1928334-001	BH01 0.1	EK025SF: Free Cyanide		40 mg/kg	97.1	70	130
	as N (QCLot: 2573726)			i i i i i ging			
			7004 44 7	405 mm m // m	00.0	70	120
S1928334-001	BH01_0.1	EK055: Ammonia as N	7664-41-7	125 mg/kg	89.0	70	130
	ated Biphenyls (PCB) (QCLot: 2567433)						
S1928334-001	BH01_0.1	EP066: Total Polychlorinated biphenyls		1 mg/kg	116	70	130
P068A: Organocl	lorine Pesticides (OC) (QCLot: 2567432)						
ES1928334-001 BH01_0.1	EP068: gamma-BHC	58-89-9	0.5 mg/kg	118	70	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	83.8	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	90.9	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	84.7	70	130
		EP068: Endrin	72-20-8	2 mg/kg	88.0	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	116	70	130
P068B: Organopl	nosphorus Pesticides (OP) (QCLot: 2567432)						
S1928334-001	BH01_0.1	EP068: Diazinon	333-41-5	0.5 mg/kg	104	70	130
	EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	80.4	70	130	
	EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	88.2	70	130	
	EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	86.4	70	130	
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	79.0	70	130
P075(SIM)A: Phe	nolic Compounds (QCLot: 2567431)						
S1928334-001	BH01_0.1	EP075(SIM): Phenol	108-95-2	10 mg/kg	99.1	70	130
	EP075(SIM): 2-Chlorophenol	95-57-8	10 mg/kg	97.2	70	130	
	EP075(SIM): 2-Nitrophenol	88-75-5	10 mg/kg	72.9	60	130	
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	10 mg/kg	85.4	70	130
	EP075(SIM): Pentachlorophenol	87-86-5	10 mg/kg	70.5	20	130	

EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 2567431)							
ES1928334-001	BH01_0.1	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	101	70	130	
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	102	70	130	
EP075A: Phenolic Compounds (QCLot: 2567428)								
ES1928334-003 BH02_0.1	EP075: Phenol	108-95-2	10 mg/kg	72.5	60	130		
	EP075: 2-Chlorophenol	95-57-8	10 mg/kg	63.7	60	130		
	EP075: 2-Nitrophenol	88-75-5	10 mg/kg	98.7	50	130		

Page	: 19 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Laboratory sample ID

Client sample ID

ub-Matrix: SOIL				IV.	latrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P075A: Phenolic	Compounds (QCLot: 2567428) - continued						
S1928334-003	BH02_0.1	EP075: 4-Chloro-3-methylphenol	59-50-7	10 mg/kg	97.3	50	130
		EP075: Pentachlorophenol	87-86-5	10 mg/kg	82.5	10	130
P075B: Polynucl	lear Aromatic Hydrocarbons (QCLot: 256742	8)					
S1928334-003	BH02_0.1	EP075: Acenaphthene	83-32-9	10 mg/kg	102	50	130
		EP075: Pyrene	129-00-0	10 mg/kg	104	50	130
P075D: Nitrosam	nines (QCLot: 2567428)						
S1928334-003	BH02_0.1	EP075: N-Nitrosodi-n-propylamine	621-64-7	10 mg/kg	87.5	50	130
P075E: Nitroaro	matics and Ketones (QCLot: 2567428)						
ES1928334-003	BH02 0.1	EP075: 2.4-Dinitrotoluene	121-14-2	10 mg/kg	95.7	40	130
	ited Hydrocarbons (QCLot: 2567428)					-	1
ES1928334-003	BH02 0.1	ED075: 1 4 Dichlershanzanz	106-46-7	10 mg/kg	102	60	130
_01920304-003	5102_0.1	EP075: 1.4-Dichlorobenzene EP075: 1.2.4-Trichlorobenzene	120-82-1	10 mg/kg	102	50	130
P080/071: Total I	Petroleum Hydrocarbons (QCLot: 2567430)			i o nignig			
S1928334-001	BH01 0.1	EP071: C10 - C14 Fraction		523 mg/kg	100	73	137
_31920334-001	B101_0.1	EP071: C10 - C14 Fraction EP071: C15 - C28 Fraction		2319 mg/kg	119	53	137
		EP071: C29 - C36 Fraction		1714 mg/kg	118	52	132
P080/071. Total I	Petroleum Hydrocarbons (QCLot: 2568240)			0.0			1
ES1928334-001	BH01 0.1	EP080: C6 - C9 Fraction		32.5 mg/kg	87.5	70	130
	_			02.0 mg/kg	07.0	10	100
	Recoverable Hydrocarbons - NEPM 2013 Frac			000	111	70	407
ES1928334-001	BH01_0.1	EP071: >C10 - C16 Fraction		860 mg/kg 3223 mg/kg	111 122	73 53	137 131
		EP071: >C16 - C34 Fraction EP071: >C34 - C40 Fraction		1058 mg/kg	97.4	52	131
D080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Frac			1000 mg/ng	0111	02	102
ES1928334-001	BH01 0.1		C6 C10	37.5 mg/kg	84.6	70	130
	_	EP080: C6 - C10 Fraction	00_010	57.5 mg/kg	04.0	10	100
EP080: BTEXN (C ES1928334-001			71-43-2	0.5 mm//m	05.0	70	100
251928334-001	BH01_0.1	EP080: Benzene EP080: Toluene	108-88-3	2.5 mg/kg 2.5 mg/kg	85.3 80.6	70	130 130
		EP080: Toluene EP080: Ethylbenzene	100-00-3	2.5 mg/kg	80.6	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	80.0	70	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	82.4	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	84.3	70	130
ıb-Matrix: WATER				N	latrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)

Method: Compound

CAS Number

Concentration

MS

Low

High

Page	: 20 of 20
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration MS Low High Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 2570760) EN1906134-001 Anonymous 7440-38-2 1 mg/L 91.2 70 130 EG020A-T: Arsenic 7440-43-9 0.25 mg/L 93.6 70 130 EG020A-T: Cadmium 7440-47-3 1 mg/L 100 70 130 EG020A-T: Chromium 7440-50-8 130 1 mg/L 70 EG020A-T: Copper # Not Determined 7439-92-1 1 mg/L 100 70 130 EG020A-T: Lead 7440-02-0 130 EG020A-T: Nickel 1 mg/L 88.9 70 130 EG020A-T: Zinc 7440-66-6 1 mg/L 89.7 70 EG035T: Total Recoverable Mercury by FIMS (QCLot: 2570766) EN1906134-003 Anonymous EG035T: Mercury 7439-97-6 0.01 mg/L 82.0 70 130 EP080/071: Total Petroleum Hydrocarbons (QCLot: 2570216) EB1923089-004 Anonymous 325 µg/L 123 70 130 EP080: C6 - C9 Fraction ____ EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 2570216) EB1923089-004 Anonymous C6 C10 375 µg/L 108 130 EP080: C6 - C10 Fraction 70 EP080: BTEXN (QCLot: 2570216) EB1923089-004 Anonymous 71-43-2 25 µg/L 83.9 70 130 EP080: Benzene 108-88-3 82.6 70 130 EP080: Toluene 25 µg/L 100-41-4 25 µg/L 83.3 70 130 EP080: Ethylbenzene EP080: meta- & para-Xylene 108-38-3 25 µg/L 83.6 70 130 106-42-3 130 95-47-6 25 µg/L 86.5 70 EP080: ortho-Xylene 130 EP080: Naphthalene 91-20-3 25 µg/L 91.4 70

QA/QC Compliance Assessment to assist with Quality Review

Work Order	: ES1928334	Page	: 1 of 12
Client	GOLDER ASSOCIATES	Laboratory	: Environmental Division Sydney
Contact	: MR THEODORE ADCOCK	Telephone	: +61-2-8784 8555
Project	: 19126714	Date Samples Received	: 04-Sep-2019
Site	: Waverton Bowling Club	Issue Date	: 11-Sep-2019
Sampler	: THEODORE ADCOCK	No. of samples received	: 20
Order number	: PO22402	No. of samples analysed	: 17

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page	: 2 of 12
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES1928515002	Anonymous	Zinc	7440-66-6	24.0 %	0% - 20%	RPD exceeds LOR based limits
Laboratory Control Spike (LCS) Recoveries							
EP075E: Nitroaromatics and Ketones	QC-2567428-002		5-Nitro-o-toluidine	99-55-8	108 %	48-99%	Recovery greater than upper control
							limit
EP075J: Organophosphorus Pesticides	QC-2567428-002		Dichlorvos	62-73-7	27.7 %	46-112%	Recovery less than lower control limit
Matrix: WATER							
Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries			Pilitiye	Gild Humber	Dutu	Linito	Common
EG020T: Total Metals by ICP-MS	EN1906134001	Anonymous	Copper	7440-50-8	Not		MS recovery not determined,
,					Determined		background level greater than or
							equal to 4x spike level.
Regular Sample Surrogates							
Sub-Matrix: SOIL							
Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP075S: Acid Extractable Surrogates	ES1928334-012	BH05_0.9	2-Fluorophenol	367-12-4	8.07 %	29-149 %	Recovery less than lower data quality
							objective
EP075S: Acid Extractable Surrogates	ES1928334-012	BH05_0.9	Phenol-d6	13127-88-3	10.8 %	32-128 %	Recovery less than lower data quality
							objective
ED0750 Asid Estas stable Osma satur	E04000004 040				00.0.0/	20 400 0/	

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP075S: Acid Extractable Surrogates	ES1928334-012	BH05_0.9	2-Fluorophenol	367-12-4	8.07 %	29-149 %	Recovery less than lower data quality
							objective
EP075S: Acid Extractable Surrogates	ES1928334-012	BH05_0.9	Phenol-d6	13127-88-3	10.8 %	32-128 %	Recovery less than lower data quality
							objective
EP075S: Acid Extractable Surrogates	ES1928334-012	BH05_0.9	2-Chlorophenol-D4	93951-73-6	20.0 %	32-128 %	Recovery less than lower data quality
							objective
EP075S: Acid Extractable Surrogates	ES1928334-012	BH05_0.9	2.4.6-Tribromophenol	118-79-6	9.52 %	13-121 %	Recovery less than lower data quality
							objective

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	10	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	20	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	10	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Page	: 3 of 12
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	19126714

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	in holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
BH01_0.1,	BH02_0.5,	02-Sep-2019				06-Sep-2019	16-Sep-2019	 ✓
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
Soil Glass Jar - Unpreserved (EA055)								
BH02_0.1,	BH03_0.1,	02-Sep-2019				09-Sep-2019	16-Sep-2019	 ✓
BH03_0.5,	BH04_0.1,							
BH04_0.8,	BH05_0.9							
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils							
Snap Lock Bag: Separate bag received (EA200)		T						
BH01_0.1,	BH03_0.1,	02-Sep-2019				09-Sep-2019	29-Feb-2020	 ✓
BH05_0.1,	Trans01							
EA200N: Asbestos Quantification (non-NATA)								
Snap Lock Bag: Separate bag received (EA200N)								
BH01_0.1,	BH03_0.1,	02-Sep-2019				09-Sep-2019	29-Feb-2020	 ✓
BH05_0.1,	Trans01							
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	06-Sep-2019	29-Feb-2020	1	06-Sep-2019	29-Feb-2020	 ✓
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	06-Sep-2019	30-Sep-2019	1	09-Sep-2019	30-Sep-2019	 ✓
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
EK025SF: Free CN by Segmented Flow Analyser								
Soil Glass Jar - Unpreserved (EK025SF)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	10-Sep-2019	16-Sep-2019	1	11-Sep-2019	24-Sep-2019	✓
BH03_0.5,	BH04_0.8,							
BH05_0.9,	QCA100							

Page Work Order	4 of 12 ES1928334
Client	: GOLDER ASSOCIATES
Project	<u>:</u> 19126714

Matrix: SOIL						Evaluation	n: × = Holding time	breach ; ✓ = With	n holding time
Method	Method Sector Sect		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK055: Ammonia as N									
Soil Glass Jar - Unpreserved (EK055)									
BH01_0.1,	BH02_0.5,		02-Sep-2019				10-Sep-2019	29-Feb-2020	✓
BH03_0.5,	BH04_0.8,								
BH05_0.9,	QCA100								
EP066: Polychlorinated Biphenyls (PCB)									
Soil Glass Jar - Unpreserved (EP066)									
BH01_0.1,	BH02_0.5,		02-Sep-2019	06-Sep-2019	16-Sep-2019	~	09-Sep-2019	16-Oct-2019	✓
BH04_0.5,	BH05_0.1,								
Trans01,	QCA100								
EP068A: Organochlorine Pesticides (OC)									
Soil Glass Jar - Unpreserved (EP068)									
BH01_0.1,	BH02_0.5,		02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	✓
BH04_0.5,	BH05_0.1,								
Trans01,	QCA100								
EP068B: Organophosphorus Pesticides (OP)									
Soil Glass Jar - Unpreserved (EP068)									
BH01_0.1,	BH02_0.5,		02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	 ✓
BH04_0.5,	BH05_0.1,								
Trans01,	QCA100								
EP075(SIM)A: Phenolic Compounds									
Soil Glass Jar - Unpreserved (EP075(SIM))					10 0 - 0010			10.0++ 0010	
BH01_0.1,	BH02_0.5,		02-Sep-2019	06-Sep-2019	16-Sep-2019	~	09-Sep-2019	16-Oct-2019	✓
BH04_0.5,	BH05_0.1,								
Trans01,	QCA100								-
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons									
Soil Glass Jar - Unpreserved (EP075(SIM))					10 0 - 0010			10.0+0010	
BH01_0.1,	BH02_0.5,		02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	✓
BH04_0.5,	BH05_0.1,	*							
Trans01,	QCA100								
EP075A: Phenolic Compounds			1	I			1		
Soil Glass Jar - Unpreserved (EP075)			00.0 0040	00.0 0040	10 0 - 0010		00.0 0040	16-Oct-2019	
BH02_0.1,	BH03_0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	-	09-Sep-2019	16-Oct-2019	✓
BH04_0.1,	BH04_0.8,								
BH05_0.9									
EP075B: Polynuclear Aromatic Hydrocarbons									
Soil Glass Jar - Unpreserved (EP075)					10.0 0010			40.0.1.0040	
BH02_0.1,	BH03_0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	~	09-Sep-2019	16-Oct-2019	✓
BH04_0.1,	BH04_0.8,								
BH05_0.9									

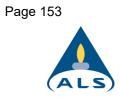
 Page
 : 5 of 12

 Work Order
 : ES1928334

 Client
 : GOLDER ASSOCIATES

 Project
 : 19126714

Matrix: SOIL						Evaluatior	n: × = Holding time	breach ; 🗸 = With	n holding time
Method			Sample Date	E	traction / Preparation				
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075C: Phthalate Esters									
Soil Glass Jar - Unpreserved (EP075)					10.0			40.0.1.0040	
BH02_0.1,	BH03_0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	✓
BH04_0.1, BH05_0.9	BH04_0.8,								
EP075D: Nitrosamines Soil Glass Jar - Unpreserved (EP075)									
BH02 0.1,	BH03 0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	1
BH04 0.1,	BH04 0.8,					-	-		
BH05_0.9					,				
EP075E: Nitroaromatics and Ketones									
Soil Glass Jar - Unpreserved (EP075)									
BH02_0.1,	BH03_0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	✓	09-Sep-2019	16-Oct-2019	✓
BH04_0.1,	BH04_0.8,								
BH05_0.9									
EP075F: Haloethers									1
Soil Glass Jar - Unpreserved (EP075)			02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	,
BH02_0.1, BH04_0.1,	BH03_0.1, BH04_0.8,		02-Sep-2019	06-3ep-2019	10-3ep-2019	~	09-3ep-2019	10-001-2019	✓
BH04_0.1, BH05_0.9	BH04_0.8,								
EP075G: Chlorinated Hydrocarbons Soil Glass Jar - Unpreserved (EP075)									
BH02_0.1,	BH03_0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	1
BH04_0.1,	BH04_0.8,								
BH05_0.9	_								
EP075H: Anilines and Benzidines									
Soil Glass Jar - Unpreserved (EP075)									
BH02_0.1,	BH03_0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	~	09-Sep-2019	16-Oct-2019	 ✓
BH04_0.1,	BH04_0.8,	•							
BH05_0.9									
EP075I: Organochlorine Pesticides							1		1
Soil Glass Jar - Unpreserved (EP075)			02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	
BH02_0.1, BH04_0.1,	BH03_0.1, BH04_0.8,		02-3ep-2013	00-0ep-2013	10-060-2013	~	03-360-2013	10-001-2013	✓
BH04_0.1, BH05_0.9	DUU4_0.0,								
									ļ
EP075J: Organophosphorus Pesticides Soil Glass Jar - Unpreserved (EP075)									
BH02_0.1,	BH03_0.1,		02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	1
BH04_0.1,	BH04_0.8,			-		-			
BH05_0.9	_ ,								


Page	: 6 of 12
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Method		Sample Date	E>	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Date extracted Due for extraction		Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons								
Soil Glass Jar - Unpreserved (EP080)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	06-Sep-2019	16-Sep-2019	1	06-Sep-2019	16-Sep-2019	1
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
Soil Glass Jar - Unpreserved (EP071)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	✓
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
Soil Glass Jar - Unpreserved (EP080)								
TS,	Trip Spike Control	28-Aug-2019	06-Sep-2019	11-Sep-2019	1	06-Sep-2019	11-Sep-2019	✓
Soil Glass Jar - Unpreserved (EP080)								
ТВ		30-Aug-2019	06-Sep-2019	13-Sep-2019	✓	06-Sep-2019	13-Sep-2019	✓
EP080/071: Total Recoverable Hydrocarbons - N	IEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP080)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	06-Sep-2019	16-Sep-2019	1	06-Sep-2019	16-Sep-2019	✓
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
Soil Glass Jar - Unpreserved (EP071)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	06-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Oct-2019	 ✓
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
Soil Glass Jar - Unpreserved (EP080)								
TS,	Trip Spike Control	28-Aug-2019	06-Sep-2019	11-Sep-2019	1	06-Sep-2019	11-Sep-2019	 ✓
Soil Glass Jar - Unpreserved (EP080)								
ТВ		30-Aug-2019	06-Sep-2019	13-Sep-2019	1	06-Sep-2019	13-Sep-2019	✓
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
BH01_0.1,	BH02_0.5,	02-Sep-2019	06-Sep-2019	16-Sep-2019	1	06-Sep-2019	16-Sep-2019	✓
BH04_0.5,	BH05_0.1,							
Trans01,	QCA100							
Soil Glass Jar - Unpreserved (EP080)								
TS,	Trip Spike Control	28-Aug-2019	06-Sep-2019	11-Sep-2019	✓	06-Sep-2019	11-Sep-2019	✓
Soil Glass Jar - Unpreserved (EP080)				40.0 0040			10.0 0010	
ТВ		30-Aug-2019	06-Sep-2019	13-Sep-2019	-	06-Sep-2019	13-Sep-2019	✓
Matrix: SOLID					Evaluation	n: 🗴 = Holding time	breach ; ✓ = With	in holding tir
Method		Sample Date	E>	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA200: AS 4964 - 2004 Identification of Asbesto	s in bulk samples							
an Lock Bag: Separate bag received (EA200)								

Snap Lock Bag: Separate bag received (EA200)
ASB0102-Sep-2019----09-Sep-201929-Feb-2020✓Matrix: WATEREvaluation: ★ = Holding time.

Page	: 7 of 12
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Extraction / Preparation				Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) RB	02-Sep-2019	08-Sep-2019	29-Feb-2020	1	08-Sep-2019	29-Feb-2020	1
EG035T: Total Recoverable Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) RB	02-Sep-2019				09-Sep-2019	30-Sep-2019	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) RB	02-Sep-2019	09-Sep-2019	09-Sep-2019	1	10-Sep-2019	19-Oct-2019	1
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) RB	02-Sep-2019	09-Sep-2019	09-Sep-2019	1	10-Sep-2019	19-Oct-2019	~
Amber VOC Vial - Sulfuric Acid (EP080) RB	02-Sep-2019	09-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Sep-2019	~
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) RB	02-Sep-2019	09-Sep-2019	09-Sep-2019	~	10-Sep-2019	19-Oct-2019	1
Amber VOC Vial - Sulfuric Acid (EP080) RB	02-Sep-2019	09-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Sep-2019	~
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080) RB	02-Sep-2019	09-Sep-2019	16-Sep-2019	1	09-Sep-2019	16-Sep-2019	~
	•						

Page	: 8 of 12
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.


Quality Control Sample Type		Count Rate (%)					Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Buchi Ammonia	EK055	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
ree Cyanide by Segmented Flow Analyser	EK025SF	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
loisture Content	EA055	4	40	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
AH/Phenols (SIM)	EP075(SIM)	1	6	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
esticides by GCMS	EP068	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
olychlorinated Biphenyls (PCB)	EP066	1	6	16.67	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
emivolatile Organic Compounds	EP075	1	5	20.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	6	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
uchi Ammonia	EK055	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
ree Cyanide by Segmented Flow Analyser	EK025SF	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
AH/Phenols (SIM)	EP075(SIM)	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
esticides by GCMS	EP068	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
olychlorinated Biphenyls (PCB)	EP066	1	6	16.67	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	1	5	20.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
lethod Blanks (MB)						_	
uchi Ammonia	EK055	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
ree Cyanide by Segmented Flow Analyser	EK025SF	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
AH/Phenols (SIM)	EP075(SIM)	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
esticides by GCMS	EP068	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
olychlorinated Biphenyls (PCB)	EP066	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	1	5	20.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	17	5.88	5.00		NEPM 2013 B3 & ALS QC Standard
latrix Spikes (MS)						-	
Buchi Ammonia	EK055	1	8	12.50	5.00	~	NEPM 2013 B3 & ALS QC Standard
Free Cyanide by Segmented Flow Analyser	EK025SF	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard

Page	: 9 of 12
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Сс	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Matrix Spikes (MS) - Continued							
PAH/Phenols (SIM)	EP075(SIM)	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Semivolatile Organic Compounds	EP075	1	5	20.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER	· · · · ·			Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)	in of a of	Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	10	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	20	0.00	10.00	*	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	19	10.53	10.00		NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)						-	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)						-	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	10	10.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)						_	
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	10	0.00	5.00	×	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	20	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
1			1			-	1

Page	: 10 of 12
Work Order	: ES1928334
Client	: GOLDER ASSOCIATES
Project	: 19126714

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples
			Analysis by Polarised Light Microscopy including dispersion staining
Asbestos Classification and	* EA200N	SOIL	Asbestos Classification and Quantitation per NEPM 2013 with Confirmation of Identification by AS 4964 - 2004
Quantitation per NEPM 2013			Gravimetric determination of Asbestos Containing Material, Fibrous Asbestos, Asbestos Fines and sample
			weight and calculation of percentage concentrations per NEPM protocols. Asbestos (Fines and Fibrous FA+AF)
			is reported as the equivalent weight in the sample received after accounting for sub-sampling (where applicable
			for the <7mm and/or <2mm fractions).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate
			acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic
			spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix
T () 11 F ()			matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS)
			FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an
			appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then
			purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This
	FK00505	SOIL	method is compliant with NEPM (2013) Schedule B(3)
Free Cyanide by Segmented Flow	EK025SF	SUL	In house: Referenced to ASTM D7237: Using an automated segmented flow analyser, a sample at high pH
Analyser			(caustic leach of a soil) is buffered to pH 6.0. The hydrogen cyanide present passes across a gas dialysis membrane into an acceptor stream consisting of 0.01 M sodium hydroxide. The acceptor stream mixes with a
			buffer at pH 5.2 and reacts with chloramine-T to form cyanogen chloride. Cyanogen chloride reacts with
			4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour. This is measured at 600nm. This
			method is compliant with NEPM (2013) Schedule B(3)
Buchi Ammonia	EK055	SOIL	In house: Referenced to APHA 4500-NH3 B&G, H Samples are steam distilled (Buchi) prior to analysis and
			quantified using titration, FIA or Discrete Analyser.
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is
			by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013)
			Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is
			by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013)
			Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and
			quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
Semivolatile Organic Compounds	EP075	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is
			by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013)
			Schedule B(3) (Method 502)

Page: 11 of 12Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Asbestos Identification in Bulk Solids	EA200	SOLID	In house: Referenced to AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
NaOH leach for CN in Soils	CN-PR	SOIL	In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior

			sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior
and Trap			to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1
			DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the
			desired volume for analysis.
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure
			used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant
			with NEPM (2013) Schedule B(3)

Page: 12 of 12Work Order: ES1928334Client: GOLDER ASSOCIATESProject: 19126714

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

t

CHAIN OF CUSTODY FORM - Client									ENVIROLAB GROUP National phone number 1300 424 344 Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 (2) 02 9910 6200 >7 sydney@envirolab.com.au											
[Copyright and Confide	ntial]														Perti	<u>1 Lab</u> - 3 Havd	MPL L en Crt.	.aborai . Mvar∉	tories e. WA	6154
Client: Golder Asso	ciates				Client	Project	Name/	Numbe	er/Site	etc (ie	report	title):								6154 om.au
Contact Person: Th					Waver	ton <u>191</u>	26714								Melt 25 R	ourne	Lab - E	Envirol	lab Ser /don Si	vices outh, VIC 3136
Project Mgr: Shane					PO No	.: PO2	2403		_	•										@envirolab.com.au
Sampler: Theo Adc						lab Que		_							Adel	aide O	ffice -	Enviro	lab Sei	rvices
Address:					Date r	esults r	equired	1:			Standa	rd T/A			7a T රා 08	ne Par 7087	ade, No 6800	orwoot ∛ade	d, SA 5 laide@	067 Jenvirolab.com.au
Level 8, 40 Mount St	reet				Or cho Note: I	oose: s nform la	tandaro ab în ad	d / sam Vance î	ie day f <i>urger</i>	l 1 day It turna	r I 2 day round is	y I 3 da s requi	y red -		Bris 20a	bane C	ffice -	Enviro St. Bai	lab Se	rvices
North Sydney NSW						irges ap			odot f	oquie					@ 07	3266	9532 [bris	bane@	envirolab.com.au
Phone: Mob: 0434 196 861					Additional report format: esdat / equis / Lab Comments: Darwin Office - Envirolab Services Unit 7, 17 Willes Rd, Berrimah, NT 0820 ① 08 8967 1201 darwin@envirolab.co							ices NT 0820 avirolab.com.au								
	Sample inform	ation									Test	s Requ	ired							Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	<u>Type of sample</u>		Combin	ation 8												-	Provide as much information about the sample as you can
	QCB100		2/09/2019	Soil		,				_				1	_		•			
		· · · · · · · · · · · · · · · · · · ·																		
									-							1				•
		·																		
												-			_					
-				<u> </u>	┨──															·
	Please tick the box if observed	i settled sed	i liment prese	nt in water samples	; is to b	e inclu	ded in t	he ext	ractior	and/o	or analy	/sis						_		
	ompany): Theo Adcock			Received by (Com												La	ab Use	Only		
Print Name: Theo				Print Name:	Job number:								Cooli	ng: lc	e / 1ce j	pack / None				
Date & Time: 3/9/2			_	Date & Time:	Temperature:								L	rity sea	al: Int <u>a</u>	ct / Broken / None				
Signature:				Signature:							TAT F	Req - S	AME da	<u>y 1 </u>	2	3 / 4	STD	_		

SAMPLE RECEIPT ADVICE

Client Details	
Client	Golder Associates Pty Ltd
Attention	T Adcock, Shane Doyle

Sample Login Details	
Your reference	19126714, Waverton Bowling Club
Envirolab Reference	225635
Date Sample Received	06/09/2019
Date Instructions Received	06/09/2019
Date Results Expected to be Reported	On Hold

Sample Condition						
Samples received in appropriate condition for analysis Yes						
No. of Samples Provided	1 Soil					
Turnaround Time Requested	Standard					
Temperature on Receipt (°C)	16.2					
Cooling Method	Ice					
Sampling Date Provided	YES					

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VHC's in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	Organophosphorus Pesticides	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	Asbestos ID - soils	On Hold
QCB100												\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 225635

Client Details	
Client	Golder Associates Pty Ltd
Attention	T Adcock, Shane Doyle
Address	124 Pacific Highway, St Leonards, NSW, 2065

Sample Details	
Your Reference	19126714, Waverton Bowling Club
Number of Samples	1 Soil
Date samples received	06/09/2019
Date completed instructions received	06/09/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	13/09/2019	
Date of Issue	13/09/2019	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *		

Results Approved By

Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 225635 Revision No: R00

Page | 1 of 22

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date extracted	-	10/09/2019
Date analysed	-	12/09/2019
TRH C ₆ - C ₉	mg/kg	<25
TRH C6 - C10	mg/kg	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	97

svTRH (C10-C40) in Soil		
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date extracted	-	10/09/2019
Date analysed	-	11/09/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	190
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	220
Total +ve TRH (>C10-C40)	mg/kg	220
Surrogate o-Terphenyl	%	82

PAHs in Soil		225625 4
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date extracted	-	10/09/2019
Date analysed	-	10/09/2019
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	107

Page	166

Organochlorine Pesticides in soil		
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date extracted	-	10/09/2019
Date analysed	-	10/09/2019
НСВ	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	86

Organophosphorus Pesticides		
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date extracted	-	10/09/2019
Date analysed	-	10/09/2019
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	86

PCBs in Soil		
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date extracted	-	10/09/2019
Date analysed	-	10/09/2019
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	86

A stal Fasture stabile an etale to a still		
Acid Extractable metals in soil Our Reference		225625 4
		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date prepared	-	10/09/2019
Date analysed	-	10/09/2019
Arsenic	mg/kg	4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	6
Copper	mg/kg	6
Lead	mg/kg	8
Mercury	mg/kg	1.0
Nickel	mg/kg	4
Zinc	mg/kg	18

Misc Soil - Inorg		
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date prepared	-	10/09/2019
Date analysed	-	10/09/2019
Total Phenolics (as Phenol)	mg/kg	<5

Moisture		
Our Reference		225635-1
Your Reference	UNITS	QCB100
Date Sampled		02/09/2019
Type of sample		Soil
Date prepared	-	10/09/2019
Date analysed	-	11/09/2019
Moisture	%	15

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> </pql></pql></pql> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Page 174

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
Date analysed	-			12/09/2019	1	12/09/2019	12/09/2019		12/09/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	87	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	87	
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	77	
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	91	
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	91	
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	87	
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	85	
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	104	1	97	99	2	99	

Page 175

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
Date analysed	-			10/09/2019	1	11/09/2019	11/09/2019		10/09/2019	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	95	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	89	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	190	170	11	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	92	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	89	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	220	200	10	92	
Surrogate o-Terphenyl	%		Org-003	81	1	82	81	1	93	

QUAL	ITY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
Date analysed	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	124	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	108	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	110	
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	112	
Pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	115	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	107	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	<0.05	<0.05	0	121	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	115	1	107	104	3	106	

QUALITY C	ONTROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
Date analysed	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
НСВ	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	85	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	86	
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	81	
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	88	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	90	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	87	
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	104	
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	89	
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	80	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
op-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	76	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-005	90	1	86	87	1	87	

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
Date analysed	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	90	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	90	
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	84	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	92	
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	98	
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	108	
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	85	
Surrogate TCMX	%		Org-008	90	1	86	87	1	87	

Page 179

QUALI	TY CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019		
Date analysed	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019		
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]		
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	104		
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]		
Surrogate TCMX	%		Org-006	90	1	86	87	1	87		

Page 180

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil	_		Duj	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date prepared	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019		
Date analysed	-			10/09/2019	1	10/09/2019	10/09/2019		10/09/2019		
Arsenic	mg/kg	4	Metals-020	<4	1	4	4	0	99		
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	97		
Chromium	mg/kg	1	Metals-020	<1	1	6	7	15	104		
Copper	mg/kg	1	Metals-020	<1	1	6	6	0	101		
Lead	mg/kg	1	Metals-020	<1	1	8	8	0	110		
Mercury	mg/kg	0.1	Metals-021	<0.1	1	1.0	1.0	0	91		
Nickel	mg/kg	1	Metals-020	<1	1	4	4	0	97		
Zinc	mg/kg	1	Metals-020	<1	1	18	18	0	103		

Envirolab Reference: 225635 Revision No: R00

ATTACHMENT TO ITEM 24 - 28/10/19 Client Reference: 19126714, Waverton Bowling Club

Page 181

QUALITY	CONTROL:	Misc Soi	I - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			10/09/2019	[NT]		[NT]	[NT]	10/09/2019	
Date analysed	-			10/09/2019	[NT]		[NT]	[NT]	10/09/2019	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	105	[NT]

ATTACHMENT TO ITEM 24 - 28/10/19 Client Reference: 19126714, Waverton Bowling Club

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

APPENDIX J Summary Table

TABLE J1 SUMMARY OF SOIL ANALYSIS RESULTS

				Location_Code	BH01	BH01	BH01	BH02	BH02	BH03	BH03	BH04	BH04	BH04	BH05	BH05	Trans01	ASB01	1							
			Sar	mple_Depth_Range		0.1	0.1	0.1	0.5	0.1	0.5	0.1	0.5	0.8		0.9										
			Sa	ampled_Date_Time	2/09/2019	2/09/2019	2/09/2019												Ð							
				Field_ID	BH01_0.1	QCA100	QCB100	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9	Trans01	ASB01	4							
			Recreational Open	Recreational Open	ı														Statistical	Summary						
ChemName	output unit	EOI	Space EIL/ESL	Space HIL/HSL															Number of	Numbor	Minimum	Minimum	Maximum	Maximum	Number of	Number of
Cheminame	output unit	EQL																		of	1				1	
		1			1														Results	Detecto	Concentration	Detect	Concentration	Detect	Guideline	Guideline
		1			1														1	Detects					Exceedances	
																										(Detects Only)
Asbestos		<u> </u>	-																				1			
Asbestos in soil (>7mm ACM)	%w/w	0.01		0.02	< 0.01	-	-	-	-	< 0.01	-	-	-	-	<0.01	-	0.13	-	4	1	<0.01	0.13	0.13	0.13	1	1
Asbestos in soil (<7mm AF/FA)	%w/w	0.001		0.001	<0.001	-	-	-	-	< 0.001	-	-	-	-	<0.001	-	<0.001	-	4	0	<0.001	ND	<0.001	ND		
Weight Asbestos in soil (>7mm ACM)	g	0.1			< 0.1	-	-	-	-	<0.1	-	-	-	-	<0.1	-	6.6	-	4	1	<0.1	6.6	6.6	6.6		
Weight Asbestos in soil (<7mm AF/FA)	g	0.0004			<0.0004	-	-		-	< 0.0004		-	-	-	< 0.0004	-	<0.0004	-	4	0	<0.0004	ND -	<0.0004	ND		
Asbestos Type	No	0.1			ND	-	-	-	-		-	-	-	-	- ND	-	#4	#5	5	- 2	-	-	-	-		
Asbestos (1-Detect or <1-Non-Detect) Asbestos Fines	g/kg fibres	0.1			ND	-	-	-	-	ND ND			-	-	ND	-	YES ND	YES	4	0	-	-	-	-		
Description	libres	1			#2				-	#2				-	#2	-	#1	-	0		-		-			
Fibrous Asbestos	mg/kg	0.0004			<0.0004	-	-		-	<0.0004				-	<0.0004	-	<0.0004	-	4	0	<0.0004	ND	< 0.0004	ND		
Mass of test sample	g	0.0004			488	-	-		-	539	-	-	-		529	-	749	38	5	5	488	38	749	749		
Sample weight (dry)	g	0.01			488	-	-	· ·	-	539	· ·	· ·	· .		529		749	38	5	5	488	38	749	749		
Inorganic compounds	10						1	1		1			1					1 00		1		,		1 1.0		
Ammonia (as N)	mg/kg	20			<20	<20	-	-	<20	-	<20	-	-	<20	-	<20	-	-	6	0	<20	ND	<20	ND		
Cyanide (free)	mg/kg	1		240	<1	<1	-	-	<1	-	<1	-		<1	-	<1	-	-	6	0	<1	ND	<1	ND	0	0
TRH - HSL																										
TRH C6 - C10 Fraction F1	mg/kg	10			<10	<10	<25	-	<10	-	-	-	<10	-	<10	- 1	<10	-	7	0	<10	ND	<25	ND		
TRH C6 - C10 Fraction Less BTEX F1	mg/kg	10	180	700	<10	<10	<25	-	<10	-	-	-	<10	-	<10	-	<10	-	7	0	<10	ND	<25	ND	0	0
TRH >C10 - C16 Fraction F2	mg/kg	50	120		<50	<50	<50	-	<50	-	-	-	<50	-	<50	-	<50	-	7	0	<50	ND	<50	ND	0	0
TRH >C10 - C16 Fraction Less Naphthalene (F2)	mg/kg	50		1000	<50	<50	<50	-	<50	-	-	-	<50	-	<50	-	<50	-	7	0	<50	ND	<50	ND	0	0
TRH >C16 - C34 Fraction F3	mg/kg	100	300	2500	<100	<100	<100	-	<100	-	-	-	<100	-	<100	-	170	-	7	1	<100	170	170	170	0	0
TRH >C34 - C40 Fraction F4	mg/kg	100	2800	7400	220	280	220	-	<100	-	· ·	-	<100	-	<100	-	<100	-	7	3	<100	220	280	280	0	0
TRH+C10 - C40 (Sum of total) (Lab Reported)	mg/kg	50			220	280	220	-	<50	-			<50		<50	-	170	-	7	4	<50	170	280	280		
BTEX												_							<u> </u>				1			
Benzene	mg/kg	0.2	50		<0.2	<0.2	<0.2	-	<0.2	-		· ·	<0.2		<0.2	-	<0.2	-	7	0	<0.2	ND	<0.2	ND	0	0
Toluene	mg/kg	0.5	85		<0.5	<0.5	< 0.5	-	< 0.5	-	-	-	<0.5		< 0.5	-	< 0.5	-	7	0	<0.5	ND	<0.5	ND	0	0
Ethylbenzene	mg/kg	0.5	70		< 0.5	< 0.5	<1	-	< 0.5	-	-		<0.5	-	< 0.5	-	< 0.5	-	7	0	<0.5	ND	<1	ND	0	0
Xylenes (m & p)	mg/kg	0.5			< 0.5	< 0.5	<2	-	< 0.5	-			< 0.5	-	< 0.5	-	< 0.5	-	7	0	<0.5	ND	<2	ND		
Xylene (o)	mg/kg	0.5			< 0.5	< 0.5	<1	-	<0.5		-		< 0.5	-	< 0.5	-	< 0.5	-	7	0	<0.5	ND	<1	ND		
Xylenes (Sum of total) (Lab Reported)	mg/kg	0.5	45		<0.5 <0.2	<0.5	<3	-	<0.5		-		<0.5	-	<0.5 <0.2	-	<0.5	-	7	0	<0.5	ND ND	<3 <0.2	ND ND	0	0
Total BTEX Heavy Metals	mg/kg	0.2			<0.Z	<0.Z	-	-	<0.Z				<0.Z	-	<0.Z	-	<0.Z	-	0	0	<0.2	ND	<0.2			
Arsenic	mg/kg	5	100	300	5	6	4		<5				<5	-	13	-	<5		7	4	4	4	13	13	0	0
Cadmium	mg/kg	1	100	90	<1	<1	<0.4		<1	-			<1	-	<1	-	<1	_	7	0	<0.4	ND	<1	ND	0	0
Chromium	mg/kg	2	190	300	7	7	6	· · ·	3	-	· ·		11	-	7	-	10	-	7	7	3	3	11	11	0	0
Copper	mg/kg	5	60	17000	6	7	6		11	-	· ·	· ·	15	-	20	-	20	-	7	7	6	6	20	20	0	0
Lead	mg/kg	5	1100	600	8	9	8	-	6	· ·	-	-	<5	-	27	-	53	-	7	6	<5	6	53	53	0	0
Mercury	mg/kg	0.1		80	1.4	0.9	1	-	0.9	-	-	-	0.3	-	1.5	-	2.2	-	7	7	0.3	0.3	2.2	2.2	0	0
Nickel	mg/kg	2	30	1200	4	4	4		10	-	-	-	25	-	4	-	3	-	7	7	3	3	25	25	0	0
Zinc	mg/kg	5	70	30000	17	21	18		22	-	-	-	9	-	26	-	63	-	7	7	9	9	63	63	0	0
Organochlorine Pesticides																										
p,p-DDE	mg/kg	0.05			< 0.05	< 0.05	<0.1	< 0.5	< 0.05	< 0.5	-	< 0.5	< 0.05	< 0.5	0.11	<0.5	< 0.05	-	12	1	<0.05	0.11	<0.5	0.11		
a-BHC	mg/kg	0.05			< 0.05		<0.1	< 0.5	< 0.05	< 0.5		< 0.5	< 0.05	<0.5	< 0.05	<0.5	< 0.05	-	12	0	<0.05	ND	<0.5	ND		
Aldrin	mg/kg	0.05			< 0.05	< 0.05		< 0.5	< 0.05	< 0.5		< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	-	12	0	<0.05	ND	<0.5	ND	ļ	
Dieldrin	mg/kg	0.05			< 0.05	< 0.05	<0.1	< 0.5	<0.05	<0.5	-	< 0.5	< 0.05	< 0.5	0.05	< 0.5	0.08	-	12	2	<0.05	0.05	<0.5	0.08		
Aldrin & Dieldrin (Sum of total) (Lab Reported)	mg/kg	0.05		10	< 0.05	< 0.05		< 0.5	<0.05	< 0.5	-	< 0.5	< 0.05	<0.5	0.05	< 0.5	0.08	-	11	2	<0.05	0.05	<0.5	0.08	0	0
b-BHC cis Chlordana	mg/kg	0.05			< 0.05	<0.05	<0.1	<0.5	<0.05	< 0.5	-	< 0.5	<0.05	< 0.5	<0.05	<0.5	< 0.05	-	12	0	<0.05	ND 0.06	<0.5	ND 0.11		
cis-Chlordane	mg/kg	0.05			< 0.05	< 0.05	<0.1		<0.05	-	-	-	<0.05	-	0.11	-	0.06	-	7	2	<0.05	0.06	0.11	0.11	-	
trans-Chlordane Chlordane (Sum of total)	mg/kg	0.05		70	<0.05 <0.05	<0.05	<0.1	-	<0.05	-	-	-	<0.05	-	0.11 0.22	-	0.08	-	6	2	<0.05 <0.05	0.08	0.11	0.11	0	0
d-BHC	mg/kg	0.05		70	< 0.05	<0.05	<0.1	<0.5	<0.05	< 0.5		< 0.5	<0.05	<0.5	<0.05	< 0.5	<0.05	-	12	0	<0.05	0.14 ND	<0.5	0.22 ND	0	0
DDD	mg/kg mg/kg	0.05			< 0.05	<0.05	<0.1	<0.5	<0.05	<0.5	-	<0.5	<0.05	<0.5	< 0.05	< 0.5	<0.05	-	12	0	<0.05	ND	<0.5	ND		
DDT	mg/kg	0.05	180		< 0.05	<0.2	<0.1	<1	<0.2	<1		<1	<0.03	<1	<0.03	<1	<0.03	-	12	0	<0.03	ND	<1	ND	0	0
DDT+DDE+DDD (Sum of total) (Lab Reported)	mg/kg	0.2	100	400	<0.2	<0.2	<0.1	<0.5	<0.2	<0.5		<0.5	<0.05	<0.5	0.11	<0.5	<0.2	-	12	1	<0.1	0.11	<0.5	0.11	0	0
Endosulfan	mg/kg	0.05		340	< 0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	<0.05		< 0.05	-	6	0	<0.05	ND	<0.05	ND	0	0
Endosulfan I	mg/kg	0.05		0.0	<0.05	<0.05	<0.1	< 0.5	<0.05	< 0.5	-	< 0.5	<0.05	< 0.5	<0.05	< 0.5	<0.05	-	12	0	<0.05	ND	<0.05	ND		
Endosulfan II	mg/kg	0.05			< 0.05	< 0.05	<0.1	<0.5	< 0.05	<0.5	-	<0.5	< 0.05	<0.5	< 0.05	<0.5	< 0.05	-	12	0	<0.05	ND	<0.5	ND	1	
Endosulfan sulphate	mg/kg	0.05			< 0.05	< 0.05	<0.1	<0.5	< 0.05	<0.5	-	<0.5	< 0.05	<0.5	<0.05	< 0.5	< 0.05	-	12	0	<0.05	ND	<0.5	ND	1	
Endrin	mg/kg	0.05		20	< 0.05	< 0.05	<0.1	< 0.5	< 0.05	< 0.5	-	< 0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	-	12	0	< 0.05	ND	<0.5	ND	0	0
Endrin aldehyde	mg/kg	0.05			< 0.05	< 0.05	<0.1	-	< 0.05	-	-	-	< 0.05	-	< 0.05	-	< 0.05	-	7	0	< 0.05	ND	<0.1	ND		
Endrin ketone	mg/kg	0.05			< 0.05	< 0.05	-	-	< 0.05	-	-	-	< 0.05	-	< 0.05		< 0.05	-	6	0	<0.05	ND	< 0.05	ND		
g-BHC	mg/kg	0.05			<0.05	< 0.05	<0.1	< 0.5	< 0.05	<0.5	-	<0.5	< 0.05	<0.5	<0.05	<0.5	< 0.05	-	12	0	<0.05	ND	<0.5	ND		
Heptachlor	mg/kg	0.05		10	<0.05	< 0.05	<0.1	< 0.5	< 0.05	< 0.5	-	< 0.5	< 0.05	< 0.5	< 0.05	<0.5	< 0.05	-	12	0	<0.05	ND	<0.5	ND	0	0
Heptachlor epoxide	mg/kg	0.05			<0.05	< 0.05	<0.1	< 0.5	< 0.05	< 0.5	-	<0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.05	-	12	0	<0.05	ND	<0.5	ND		
Hexachlorobenzene	mg/kg	0.05		10	< 0.05	< 0.05	<0.1	<1	< 0.05	<1	-	<1	< 0.05	<1	<0.05	<1	< 0.05	-	12	0	< 0.05	ND	<1	ND	0	0
Methoxychlor	mg/kg	0.2		400	<0.2	<0.2	<0.1	-	<0.2	-	-	-	<0.2	-	<0.2	-	<0.2	-	7	0	<0.1	ND	<0.2	ND	0	0
Organophosphorous Pesticides		<u> </u>																								
					- A O O E	< 0.05																				
Azinphos-methyl Bromophos-ethyl	mg/kg mg/kg	0.05			<0.05 <0.05	< 0.05	<0.1	-	<0.05	-	-	-	<0.05	-	<0.05 <0.05	-	<0.05 <0.05	-	7	0	<0.05 <0.05	ND ND	<0.1 <0.1	ND ND		

FORMER WAVERTON BOWLING CLUB SITE NORTH SYDNEY COUNCIL

TABLE J1 SUMMARY OF SOIL ANALYSIS RESULTS

Image: Sector into the sector intecon into the sector into the sector into the sector i					Location_Code	BH01	BH01	BH01	BH02	BH02	BH03	BH03	BH04	BH04	BH04	BH05	BH05	Trans01	ASB01	1							
Image: Proper table into a proper table int				Sar				1			1		1						10001	1							
Carbon Carbon Carbon Carbon <th></th> <th></th> <th></th> <th>Sá</th> <th><u> </u></th> <th>· · ·</th> <th></th> <th>9</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				Sá	<u> </u>	· · ·														9							
Barton Barton<					_	BH01_0.1	QCA100	QCB100	BH02_0.1	BH02_0.5	BH03_0.1	BH03_0.5	BH04_0.1	BH04_0.5	BH04_0.8	BH05_0.1	BH05_0.9	Trans01	ASB01	-	-						
Character Control Contro Control Control <				· · ·																Statistical	Summary						
Image: Proprint and p	ChemName	output unit	EQL	Space EIL/ESL	Space HIL/HSL															Number of	Number	Minimum	Minimum	Maximum	Maximum	Number of	Number of
Image: Part and			1																	Results	of	Concentration	n Detect	Concentration	Detect	Guideline	Guideline
Departing PA DA DA DA DA <th< th=""><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Detects</th><th></th><th></th><th></th><th></th><th>Exceedances</th><th>Exceedances</th></th<>			1																		Detects					Exceedances	Exceedances
mbrem mbre mbre <t< th=""><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>(Detects Only)</th></t<>			1																								(Detects Only)
mbrem mbre mbre <t< th=""><th>Carbonhenothion</th><th>ma/ka</th><th>0.05</th><th></th><th></th><th><0.05</th><th><0.05</th><th></th><th></th><th><0.05</th><th></th><th></th><th></th><th><0.05</th><th></th><th><0.05</th><th></th><th><0.05</th><th></th><th>6</th><th>0</th><th><0.05</th><th>ND</th><th><0.05</th><th>ND</th><th></th><th></th></t<>	Carbonhenothion	ma/ka	0.05			<0.05	<0.05			<0.05				<0.05		<0.05		<0.05		6	0	<0.05	ND	<0.05	ND		
Dependent Def Def Dep Dep Dep< Dep Dep De										+	-				-				-				_				
Image: Section of the sectin of the section of the section					250			<0.1		+									-							0	0
bit bit <td></td> <th></th> <th>_</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			_										-						-			1					
between main main <						< 0.05	-				1	-		1	1	1	-	1	-		0	1					
Intend No. No.<	Diazinon	mg/kg	0.05			< 0.05	< 0.05	<0.1	<0.5	< 0.05	< 0.5	-	< 0.5	< 0.05	< 0.5	< 0.05	<0.5	< 0.05	-	12	0	< 0.05	ND	<0.5	ND		
ibit ibit <th< td=""><td>Dichlorvos</td><th>mg/kg</th><th>0.05</th><td></td><td></td><td><0.05</td><td>< 0.05</td><td><0.1</td><td><0.5</td><td>< 0.05</td><td>< 0.5</td><td>-</td><td>< 0.5</td><td>< 0.05</td><td>< 0.5</td><td><0.05</td><td><0.5</td><td>< 0.05</td><td>-</td><td>12</td><td>0</td><td>< 0.05</td><td>ND</td><td><0.5</td><td>ND</td><td></td><td></td></th<>	Dichlorvos	mg/kg	0.05			<0.05	< 0.05	<0.1	<0.5	< 0.05	< 0.5	-	< 0.5	< 0.05	< 0.5	<0.05	<0.5	< 0.05	-	12	0	< 0.05	ND	<0.5	ND		
internation mode	Dimethoate	mg/kg				<0.05		<0.1			1	-	< 0.5	1			< 0.5		-	12	0	1	ND	1			
Image Phy Phy </td <td>Ethion</td> <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td><0.1</td> <td><0.5</td> <td></td> <td>< 0.5</td> <td>-</td> <td>< 0.5</td> <td></td> <td><0.5</td> <td></td> <td>< 0.5</td> <td>1</td> <td>-</td> <td>12</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ethion							<0.1	<0.5		< 0.5	-	< 0.5		<0.5		< 0.5	1	-	12		1					
imple mode mode <t< td=""><td></td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>															-		-		-			1					
Interna No.															-				-			1	_				
image image <th< td=""><td></td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td>_</td><td></td><td></td><td></td><td></td></th<>										+									-			1	_				
Description No. Col Col Col Col								1											-			1				-	
International NMA I NMA I NMA I NMA																		-	-			1				1	1
Immedia Immedia <t< td=""><td></td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td>1</td></t<>																			-			1		1		1	1
mps mps <td></td> <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>· · ·</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>1</td> <td>1</td>										+									-	· · ·			_			1	1
Image Image <th< td=""><td></td><th></th><th></th><td></td><td></td><td>< 0.05</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>< 0.05</td><td></td><td><u> </u></td><td>< 0.5</td><td>< 0.05</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						< 0.05		-				-		< 0.05		<u> </u>	< 0.5	< 0.05	-								
Image: Second	Ronnel		0.1			-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	1	0	<0.1	ND	<0.1	ND		
interview interview <t< td=""><td>PAH</td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	PAH																										
Important No. No. No. No. No			1									-			<u> </u>				-				_				
Interview No. S. No. No. No. No.	Acenaphthene											-							-			1	_				
Important mode Mode Mode Mode <							-	1			1			1			-		-			1					
minimization mode field field dial dia dial dial								1			1			4								1	_	1			
beschegers 10 gene handing mp/s 5. mode 5. Mode S. Mode S. S. S. S. S. <			_	0.7																		1		1	1	1	1
set solution nybe 0.5 0.6 0.6 0.6 <t< td=""><td></td><th></th><th></th><td>0.7</td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>1</td><td>1</td></t<>				0.7						+		-	-										_			1	1
percent																			-			1	_				
pertole mpt 0.5 0.6 0.5 0.7					3		-	-			1					1	-		-			1				1	1
internal math math <td></td> <th></th> <th></th> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>							-					-	-	1	1	1			-			1					
percent multi no. no. no. no.						< 0.5	< 0.5	< 0.1	< 0.5	<0.5	<0.5	-	<0.5	< 0.5	< 0.5		< 0.5		-	12	1	1					
Discription ngh 0.5 0.5 0.5			0.5			<0.5	<0.5	-	-	<0.5	-	- 1	-	< 0.5	-	<0.5	-	0.9	-	6	1	<0.5	0.9	0.9	0.9		
Image no no no no no<	Chrysene	mg/kg	0.5			<0.5	< 0.5	<0.1	<0.5	< 0.5	<0.5	-	<0.5	< 0.5	< 0.5	<0.5	< 0.5	2.1	-	12	1	<0.1	2.1	2.1	2.1		
Image mg/s 0.5 0.5 0.0	Dibenz(a,h)anthracene	mg/kg	0.5			<0.5	<0.5	< 0.1	<0.5	<0.5		-	< 0.5	< 0.5	< 0.5		< 0.5		-	12	0	<0.1	ND	<0.5			
Index [32-4] Index Rafin Ra												-							-			1					
phenomic mply 0.5 0.5 0.0																			-			1					
phenome mp/g 0.5 0.0 0.			_	170							<u> </u>			1				1	-			1		1		0	0
prend m/k 0.5 </td <td></td> <th></th> <th></th> <td>1/0</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>0</td> <td>0</td>				1/0															-				_			0	0
Philom Obs Obs<													1	1				1	-			1					
Taria N(1)PA(N)(10) mg/kg 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.0 0.05 N0					300			-					-			1		1	-			1		1		0	0
Letting main							-	< 0.05	-		-	-		1			-	-	-	1		1					
Phenole <td></td> <th></th> <th></th> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>< 0.5</td> <td>-</td> <td>-</td> <td>5</td> <td>0</td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td></td> <td></td>						-		-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	-	5	0		ND		ND		
2.4.5 Trichloropheni mg/g 0.5 0.	Phenols																										
24.64 me/k 0.5			5				-	<5				-			-		-		-			-	_				
2-bold mg/kg 0.5 0.5 0.5 0.5 <t< td=""><td></td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			-								
2.6.0 mg/kg 0.5 0.0 <														1					-			1		1			
2-Chrophenol mg/g 0.5 0.5 0.5			_																-				_			+	
h class mg/kg 0.5 0.5 0.5										+									-				_				
Perchances mg/g 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 <t< td=""><td></td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td></t<>														1					-	-		1		1	1	1	1
2-Dimethylphenol mg/kg 0.5 0.6 0.5 0.5 0.5 0.5 0.0 </td <td></td> <th></th> <th>1</th> <td></td> <td>120</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>1</td> <td>_</td> <td></td> <td></td> <td>0</td> <td>0</td>			1		120									1					-			1	_			0	0
2-Methylphenol mg/kg 0.5 Mode			0.5					-				-							-							1	
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$					4000			-				-							-				_			0	0
Phend mg/kg 0.5 0.5 0.0 <					4000	<1	<1	-				-			<0.5	<1			-	11	0	<0.5	ND			0	0
Polychorinated Biphenyls mg/kg 0.1 Concerned Stress Second Stres Second Stress Second Stress	· · · ·							-				-							-				_				
Araclor 1016 mg/kg 0.1 0 0.1 0.1 0.1 0.1 ND 0.1 ND </th <th></th> <th> mg/kg</th> <th>0.5</th> <th></th> <th>40000</th> <th>< 0.5</th> <th>< 0.5</th> <th> -</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>-</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>-</th> <th>11</th> <th> 0</th> <th><0.5</th> <th>ND</th> <th><0.5</th> <th>ND</th> <th>0</th> <th>0</th>		mg/kg	0.5		40000	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	11	0	<0.5	ND	<0.5	ND	0	0
Arcclor 1232 mg/kg 0.1 0.1 0.1 0.1 0.1 0.1 ND	<u>· · · ·</u>		0.6			<u> </u>	1		1	1	1	1	1	1	1		1	1	1	<u> </u>	-					1	1
Aroder 1242 mg/kg 0.1 Cal																										+	
Aroder 1248 mg/kg 0.1 Cal																						1				+	+
Aroder 1254 mg/kg 0.1 0.1 0.1 0.1 0.1 0.1 0.1 ND 0.1																						1	_			+	+
Aroclor 1260 mg/kg 0.1 0.0 0.1 0.0 0.1 ND 0.0 ND 0.0 ND 0.0 <																						1		1		+	
Arocle 1221 mg/kg 0.1 General Control Sector Sec																							_			1	1
PCB (sum of Total-Lab Reported) mg/kg 0.1 0 0.1																							_			1	1
SVOCs mail mail <t< td=""><td></td><th></th><th>_</th><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td>0</td><td>0</td></t<>			_		1														-			1		1		0	0
n-Nitrosomethylethylamine mg/kg 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			Ĺ						·				·														
		mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
	n-Nitrosodiethylamine	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	<0.5	-	<0.5	-	-	5	0	<0.5	ND	<0.5	ND		

FORMER WAVERTON BOWLING CLUB SITE NORTH SYDNEY COUNCIL

TABLE J1 SUMMARY OF SOIL ANALYSIS RESULTS

				Location_Code	BH01	BH01	BH01	BH02	BH02	BH03	BH03	BH04	BH04	BH04	BH05	BH05	Trans01	ASB01	1							
			Sar	nple_Depth_Range	0.1	0.1	0.1	0.1	0.5	0.1	0.5	0.1	0.5	0.8	0.1	0.9			1							
				ampled_Date_Time	2/09/2019	9 2/09/201	9 2/09/201	9 2/09/201	2/09/201	9 2/09/20	9 2/09/20	019 2/09/201	9 2/09/201	9 2/09/201	9 2/09/201	9 2/09/2019	2/09/2019	2/09/2019	1							
						QCA100						0.5 BH04 0.1							1							
			Recreational Open	Recreational Open															Statistical	Summary						
			Space EIL/ESL	Space HIL/HSL																		1				
ChemName	output unit	EQL																	Number o	f Number	Minimum	Minimur	n Maximum	Maximum	Number of	Number of
																			Results	of	Concentration	Detect	Concentrat	on Detect	Guideline	Guideline
																				Detects					Exceedances	Exceedances
																										(Detects Only)
N-Nitrosodi-n-butylamine	malka	0.5			-	1	1	< 0.5	1	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	1	-	5	0	<0.5	ND	<0.5	ND		
N-Nitrosodi-n-propylamine	mg/kg mg/kg	0.5			-	-	-	<0.5	-	<0.5		<0.5		<0.5		<0.5		-	5	0	<0.5	ND	<0.5	ND		
1-Naphthylamine	mg/kg	0.5			-		-	<0.5		<0.5		<0.5		<0.5		<0.5		-	5	0	<0.5	ND	<0.5	ND		
n-Nitrosodiphenylamine & Diphenylamine	mg/kg	1			-	-		<1	-	<1	-	<1	-	<1		<1		-	5	0	<1	ND	<1	ND		
2-Nitroaniline	mg/kg	1			-	-	· .	<1	-	<1	-	<1		<1	· .	<1	· -	-	5	0	<1	ND	<1	ND		
3-Nitroaniline	mg/kg	1			-	-	-	<1	-	<1	-	<1	-	<1	-	<1	-	-	5	0	<1	ND	<1	ND		
4-Chloroaniline	mg/kg	0.5			-	-	· .	<0.5	-	< 0.5	-			<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND		
2-methyl-5-nitroaniline	mg/kg	0.5			-	-	· .	< 0.5	· .	< 0.5	-	< 0.5	· .	<0.5		<0.5	· .	-	5	0	<0.5	ND	<0.5	ND		
4-Nitroaniline	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5		< 0.5	-	< 0.5		-	5	0	<0.5	ND	<0.5	ND		
Aniline	mg/kg	0.5			-	-	-	<0.5	-	< 0.5	-	< 0.5	-	< 0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	1	
Nitrobenzene	mg/kg	0.5			-	-	-	<0.5	-	< 0.5	-		-	<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	1	
Pentachloronitrobenzene	mg/kg	0.5			-	-	-	<0.5	-	< 0.5	-	< 0.5	-	<0.5	1 -	<0.5	-	-	5	0	<0.5	ND	<0.5	ND	1	
1,3,5-Trinitrobenzene	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND	1	
2,4-Dinitrotoluene	mg/kg	1			-	-	-	<1	-	<1	-	<1	-	<1	-	<1	-	-	5	0	<1	ND	<1	ND		
2,6-Dinitrotoluene	mg/kg	1			-	-	-	<1	-	<1	-	<1		<1	-	<1	-	-	5	0	<1	ND	<1	ND	1	
Pentachlorobenzene	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Pronamide	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	· ·	-	5	0	<0.5	ND	<0.5	ND		
2-Chloronaphthalene	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	K -	< 0.5	- 1	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
3-Methylcholanthrene	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	- T	<0.5	· ·	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
7,12-Dimethylbenz(a)anthracene	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	<0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Carbazole	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	•	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Chlorobenzilate	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5		<0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Bis(2-ethylhexyl) phthalate	mg/kg	5			-	-	-	<5	-	<5	-	<5	-	<5	-	<5	-	-	5	0	<5	ND	<5	ND		
Butylbenzyl phthalate	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	<0.5	-	<0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Diethyl phthalate	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	<0.5	-	< 0.5		< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Dimethyl phthalate	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	< 0.5	-	<0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Di-n-butyl phthalate	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	<0.5		<0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Di-n-octyl phthalate	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	<0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	< 0.5	ND		
2-(Acetylamino) fluorene	mg/kg	0.5			-	-	-	< 0.5		< 0.5		<0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
2-Picoline	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5	-	<0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
3,3-Dichlorobenzidine	mg/kg	0.5			-	-	-	< 0.5	-	<0.5	-	<0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
4-(Dimethylamino) azobenzene	mg/kg	0.5			-	-	-	< 0.5		< 0.5	-	<0.5		< 0.5		< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
4-Aminobiphenyl	mg/kg	0.5			-	-	-	< 0.5	-	<0.5		<0.5		< 0.5		< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
4-Bromophenyl phenyl ether	mg/kg	0.5			-	-	-	<0.5		<0.5	_	<0.5	-	< 0.5		< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
4-Chlorophenyl phenyl ether	mg/kg	0.5			-	-	-	< 0.5	-	< 0.5		<0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
4-Nitroquinoline-n-oxide	mg/kg	0.5			-	-	-	<0.5	-	<0.5	-	<0.5	-	<0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Acetophenone	mg/kg	0.5			-	-		< 0.5		< 0.5	-	< 0.5	-	<0.5	-	<0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Azobenzene	mg/kg	1			-	-		<1		<1	-	<1	-	<1	-	<1	-	-	5	0	<1	ND	<1	ND		
Bis(2-chloroethoxy) methane	mg/kg	0.5			-	-	-	<0.5	- ·	<0.5	-	<0.5	-	<0.5	-	<0.5	-	-	5	0	<0.5	ND	<0.5	ND		
Bis(2-chloroethyl) ether	mg/kg	0.5			-	-		<0.5	-	<0.5		<0.5	-	<0.5	-	<0.5		-	5	0	<0.5	ND	<0.5	ND		
Dibenzofuran	mg/kg	0.5			-			<0.5		<0.5		<0.5	-	<0.5	-	<0.5	-	-	- 5	0	<0.5	ND	<0.5	ND		
Hexachlorocyclopentadiene	mg/kg	2.5			-		1 · ·	-	-		-	<2.5	-	<2.5	-	<2.5	-	-	5	0	<2.5	ND	<2.5	ND		
Hexachloropropene Methapyrilene	mg/kg mg/kg	0.5 0.5			-		- · ·	<0.5	-	<0.5			-	<0.5	-	<0.5	-	-	5	0	<0.5	ND ND	<0.5	ND ND		
n-Nitrosomorpholine		0.5			-	-		<0.5		<0.5	_	_		<0.5	-	<0.5	-	-	5	0	<0.5	ND	<0.5	ND	-	
N-Nitrosopiperidine	mg/kg mg/kg	0.5			-			<0.5		<0.5		<0.5		<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	-	
n-Nitrosopyrrolidine	mg/kg	1			-			<1		<1				<1		<1	-	-	5	0	<1	ND	<1	ND	-	
Phenacetin	mg/kg	0.5			-	-		<0.5		<0.5	_			<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	-	
Volatile Organic Compounds	1115/ 45	5.5			-	-	-	1 10.3		1 \0.5	-	1 \0.5		1 \0.3	-	1 \0.5		-		0	1 10.0		1 \0.3		1	
1,4-Dichlorobenzene	mg/kg	0.5			-	-	-	<0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	< 0.5	-	-	5	0	<0.5	ND	<0.5	ND	1	
1,2,4-Trichlorobenzene	mg/kg	0.5			-		-	<0:5	-	<0.5				<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	-	
1,2-Dichlorobenzene	mg/kg	0.5			-			<0.5	-	<0.5	_			<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	-	
1,3-Dichlorobenzene	mg/kg	0.5			-		-	<0.5		<0.5		<0.5		<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	1	
Isophorone	mg/kg	0.5			-		-	<0.5	-	<0.5				<0.5		<0.5		-	5	0	<0.5	ND	<0.5	ND	1	
Hexachlorobutadiene	mg/kg	0.5			-			<0.5		<0.5	_	<0.5	_	<0.5		<0.5		-	5	0	<0.5	ND	<0.5	ND	1	
Hexachloroethane		0.5			-			<0.5	-	<0.5	-	<0.5		<0.5		<0.5	-	-	5	0	<0.5	ND	<0.5	ND	1	1
HEARCHIOLOCUIDHE	IIIg/ Kg	0.5			-	-	-	1 40.5	-	<u.5< td=""><td>-</td><td>1 \0.5</td><td>-</td><td>L <0.5</td><td>1 -</td><td>1 40.5</td><td>-</td><td>-</td><td>Э</td><td>U</td><td>0.5</td><td></td><td>1 0.5</td><td></td><td>1</td><td>1</td></u.5<>	-	1 \0.5	-	L <0.5	1 -	1 40.5	-	-	Э	U	0.5		1 0.5		1	1

Data Comments

#1 Mid brown soil containing one piece of asbestos cement sheeting approximately 40x40x5mm.

#2 Mid brown soil.

#3 A. SMYLIE

#4 Chrysotile + Amosite #5 Chrysotile

Page 187

FORMER WAVERTON BOWLING CLUB SITE NORTH SYDNEY COUNCIL

APPENDIX K

Data Validation Records

ら GOLDER

ATTACHMENT TO ITEM 24 - 28/10/19

	S GOLDER						Sydney)
	Project Name:		NSC Phase 1 ES	A Waverton		Project Number:	19126714
	Primary Laboratory:		ALS Syd	Iney		Work order Number:	ES1928334
							225635
Selengie Description Description Description Description Internet of Depletes Remote. 1 Remote of older SADE Response. 3 Companded Remote. 1 Remote of older SADE Response. 3 Companded Remote and Response. 1 Response of older Remote and Response. 3 Companded Remote and Response. 1 Response of older Remote and Response. 3 Companded Remote and Response. 1 1 Response of older Remote and Response. 3 Companded Remote Remote and Response. 1 1 Response. 3 3 Companded Remote							
united Philosofter Standset 1 1 Integrate Philosofter Standset 1 Note Note Note <td>bate bampied.</td> <td></td> <td>2100/20</td> <td></td> <td></td> <td></td> <td>001</td>	bate bampied.		2100/20				001
Description 1 Description 3 Description Description <tddescription< td=""> <tddescription< td=""></tddescription<></tddescription<>	lumber of Drimony Complex.				÷		1
Image: Part of the second se	Number of Duplicate Samples:						3
Competition provide in a second second second second in a second second second in a second second second second second second in a second s			Docume			ndling Information	• · · · ·
Consister properties In Description Description In Description Description Description Interact Properties Interact Properties Description Interact Properties Interact Properti				Y.			
Image: consistent in the constant in th	00			I .			Iff. Sample BH01 0.9 recived by laboratory but not include
In species drained source from COC completes. Image of the species of the COC completes. In species drained status of difficit Image of the species of the COC completes. In species drained status of difficit Image of the species of the COC completes. In species drained status of difficit Image of the species of the coc completes. In species drained status of difficit Image of the species of the	OC completed propeny?						rded
		-				Envirolab. COC reclept date and time reco	lueu.
	ll requested analysis sampleted				V	ALC & Envirolphy All requested analysiss a	a the COC completed
Number House House House House I Densities 1: 42. Clis presents integrates and submitted marges and advantable from the submitted House	All requested analysis completed?				Y	ALS & Envirolab: All requested analyses of	n the COC completed.
Number House House House House I Densities 1: 42. Clis presents integrates and submitted marges and advantable from the submitted House		-					
	New restance in the state of th	.			N/	ALS: 5.3°C, ice present.	
Action of the second	samples received intact and chilled	(Y	Envirolab: 16.2°C, ice present. Samples re	ceived in appropriate condition for analysis.
Action of the second	Complex applying durithin appropriate	a halding timesa?			V		and the balling data a
Implementant and finder for OC - margins ¹ Implementant	samples analysed within appropriate	a holding times?			T	ALS & SGS: All analyses were within appr	opriate holding times.
April Not Section states in which is sensitive and provide the bandward of Carabiants In the mark of the sensitive and the bandward of Carabiants In the mark of the sensitive and the bandward of Carabiants In the mark of the sensitive and the bandward of Carabiants In the mark of the sensitive and the bandward of Carabiants In the mark of the sensitive and the bandward of the bandward						ALS: Insufficient sample volume provided	for LD and MS for PAH/Phenols (GC/MS - SIM) and TRH
	Sample volumes sufficient for QC a	nalysis?		1	N		
ue ter en MATA Ascondute andmahr subditive V NETC 2013. And Ascondute in the back as NATA Ascondute. bandargunt supportAdia and ascondute and ascondute in the back as NATA Ascondute. Add Sample Information Informatin Informatin Informatio Information Information Information Infor						ALS & Envirolab: Sufficient sample volume	e provided for all other laboratory QC analyses.
ue ter en MATA Ascondute andmahr subditive V NETC 2013. And Ascondute in the back as NATA Ascondute. bandargunt supportAdia and ascondute and ascondute in the back as NATA Ascondute. Add Sample Information Informatin Informatin Informatio Information Information Information Infor							
							reights and percentages to the reporting limits required by
	are unere non-NATA accredited met	IUUS USEO?		1	T		this botch are NATA secretized
about money signed by subinizing provint. V Millionezay region signed by aubinizing provint. DAGC Single bindmin (BR thank Black BL, BR, Brakk BLAK, BR, BR Balk BLAK, TR), BRBLIN, TR). Comments Mile Comments Comments Mile Mile obstance regions and the state of the state base relation (State Black, TR). Comments Mile Mile obstance regions and the state of the stat							I THIS DATCH ARE INA LA ACCREDITED.
DACE Sample Information (Mathing Status, - 198, Fragman					-		
Image Image Image Image MB MODE DEVER. All results seen books to LOR (AS & Encode). NB NB All results seen books to LOR (AS & Encode). NB NB NB Analyse Control Spain NB Amalyse Control Spain NB Control Spain Control Spain NB Control Spain Control Spain Control Spain Control Spain Control Spain Control Spain	aboratory reports signed by authori	sed personnel?		· ·	Y	All laboratory reports signed by authorised	personnel.
Image Image Image Image MB MODE DEVER. All results seen books to LOR (AS & Encode). NB NB All results seen books to LOR (AS & Encode). NB NB NB Analyse Control Spain NB Amalyse Control Spain NB Control Spain Control Spain NB Control Spain Control Spain Control Spain Control Spain Control Spain Control Spain		QAQ	C Sample Information (Metho	od Blank - M	B, Rinsate B	Blank - RB, Field Blank - FB, Trip Blank -	TB)
NS Method blenk All results were before ALCR (A.S. Envirole). RS RS RS All results were before ALCR (A.S.). RS RS RS All results were before ALCR (A.S.). RS RS Trip Spike Envirolentin Control Spike Control Spike Analyse Trip Spike Envirolentin Control Spike Control Spike Control Spike Col: Col Transcon 70 64 Trip Spike Envirolentin Control Spike Col: Col Transcon 70 64 Trip Spike Envirolentin Control Spike Col: Col Transcon 70 64 Trip Spike Envirolentin Control Spike Col: Col Transcon 70 64 Trip Spike Envirolentin Control Spike Total method 13 Trip Spike Envirolentin Trip Spike Envirolentin Control Spike Total method 13 Trip Spike Envirolentin Spike Envirolentin Control Spike Total method 14 14 Spike Envirolentin Control Spike Envirolentin Total method 14 14 Spike Envirolentin	Type						
18 18 18 10<					vere below "		
BA BA Intrasta sendow Re. LOR (U.S.). Ty Space Information Ty Space Information Comments Space 107 Space Information Comments Space 107 Space Information Comments Space 107 Space Information Space Information Comments Space 107 Space Information Space Information Space Information Space 107 Space Information Space Information Space Information Space 107 Space Information Space Information Space Information Space 107 Space Information Space Information Space Information Space Information Space 107 Space Information Laboratory Down Space Information Space Information Space Information Space 107 Space Information Laboratory Down Space Information Space Information Space Information Space 107 Space Information Laboratory Down Space Information Space Information Space 107 Space Information Laboratory Down Space Information Space Information Space 107 Space Information <td< td=""><td></td><td>Met</td><td></td><td></td><td></td><td></td><td></td></td<>		Met					
Image in the second state of the second sta		}					
Analyte Control Spike Trip Spike Concentration Is Recovery Comments ample 10: 78 Control Spike Product Spike Control Spike Product Spike Control Spike Product Spike Control Spike Control Spike Product Spike Control Spike Product Spike Control Spike Product Spike Control Spike Control Spike Product Spike Control Spike Product Spike Control Spike Product Spike Control Spike Control Spike Product Spike Control Spike Product Spike Control Spike Product Spike Control Spike Description Product Spike Control Spike Product Spike Control Spike	КВ	<u>.</u>	ND				
margine Concentrations (inp spine Uncentration) (inclusion) Continuema Gel Col Fraccion 70 64 131 Read its stimt holes (hype, 1994) (heep) Gel Col Fraccion 70 64 130 (heep) (hee		O and the LOw line		Trip S	pike inform	ation	
Ample Dr 15 How Provides August symbol data quality descence (DOGs) (70%-130%), and the construction of the quality descence (DOGs) (70%-130%), and the construction of the quality descence (DOGs) (70%-130%), and the construction of the quality descence (DOGs) (70%-130%), and the construction of the quality descence (DOGs) (70%-130%), and the quality descence	Analyte		Trip Spike Concentrat	tion %	% Recovery		Comments
CBC GP Fination 70 64 915 Results settion to the quark polytemic (DOD) (70%-130%). CBC GP Fination minus BTEX (P) 41 38 55%. Results settion DODs (70%-130%). CBC GP Fination minus BTEX (P) 41 38 55%. Result is within DODs (70%-130%). Totume 16.3 17.7 50%. Result is within DODs (70%-130%). Totume 16.3 17.7 50%. Result is within DODs (70%-130%). Stratume 16.2 16.4 95%. Result is within DODs (70%-130%). Stratume 6.7 6.4 95%. Result is within DODs (70%-130%). Neghthalize 6.7 6.4 95%. Result is within DODs (70%-130%). Neghthalize 6.7 6.4 95%. Result is within DODs (70%-130%). Neghthalize 6.7 6.4 95%. Result is within DODs (70%-130%). Neghthalize 6.7 6.4 95%. Result is within DODs (70%-130%). Neghthalize 6.7 F.7 Result is within DODs (70%-130%). Neghthalize 6.7		Concentrations					
Check OF Francision 84 78 90 Parallel switch DODG (70%-130%). CE OF Enconsonment BTX (F) 0.2 0.2 100% Read is switch DODG (70%-130%). CE OF Enconsonment BTX (F) 0.3 17.4 90% Read is switch DODG (70%-130%). Ethylphensene 2.8 2.7 95% Read is switch DOGG (70%-130%). Integration 1.4 0.0% Read is switch DOGG (70%-130%). Integration 1.4 0.0% Read is switch DOGG (70%-130%). Nagehnbase 1.4 0.0% Read is switch DOGG (70%-130%). Nagehnbase 1.4 0.0% Read is switch DOGG (70%-130%). Nagehnbase 1.4 0.0% Read is switch DOGG (70%-130%). Nationa Santa Mathema A.S. The LOS recourse for Switch on orthologic LOS (17%) was transported DOGG. Read is switch DOGG (70%-130%). Nationa Santa Mathema A.S. The LOS recourse for Switch on Orthologic LOS (16%) was transported DOGG. Read is switch DOGG (16%) 21% (16%) Read is consent comments. Als S thrutcask Read Was DOGG A.S. The LOS recourse for Switch on Orthologic LOS (16%) was transported DOGG. Read is Rea							
Operation must be TEX. F[1] 41 90 Provide and the service point of the service poi	C6-C9 Fraction	70					Os) (70%-130%).
Bencome 0.2 0.2 0.0 Result is within BOOR (707-135%). Bithyboruzne 2.8 2.7 4% Result is within BOOR (707-135%). Bithyboruzne 2.8 2.7 4% Result is within BOOR (707-135%). Chyboruzne 5.7 5.4 2% Result is within BOOR (707-135%). Chyboruzne 5.7 5.4 2% Result is within BOOR (707-135%). Naghtabare Comments Comments Result is within BOOR (707-135%). Nitrouronatios and Valores A.5 The LCS money of Composition Statistics (107) is ward parent than the upper laboratory based DOOR (46-19%). Rule to overal comments. Organophasphorus Pesicidie A.5 The LCS money of Composition Statistics (107) is ward parent than the upper laboratory statistics (107) is ward parent parents Marky Group Comments A.5 Emotogial parent parents Marky Group Comments Comments A.5 Marky Group Statistics (10) A statistics (10)	C6-C10 Fraction	84					
Towne 19.3 17.4 1000 Result suffer Odcs (704-1906). Ethyberoren 2.8 2.7 16.4 1965 Result suffer Odcs (704-1906). mip-system 15.2 14.4 1965 Result suffer Odcs (704-1906). Negethiere -1 10000 Result suffer Odcs (704-1906). Negethiere -1 1.5 The LCS model (1000 must supplice Su	C6-C10 Fraction minus BTEX (F1)	41	38		93%	Result is within DQOs (70%-130%).	
Ethydpaczene 2.8 2.7 9:0 Reading starting DOG (70%-150%), Reading Starting	Benzene	0.2	0.2		100%	Result is within DQOs (70%-130%).	
Ethydrocene 2.8 2.7 60 Result symmin DOG (70%-130%), Result symmi	Toluene	19.3	17.4		90%	Result is within DQOs (70%-130%).	
mby optime 15.2 14.4 95.8 Result within DOC (709-1396). Nepthalene -1 -1 1002 Result within DOC (709-1396). Nepthalene -1 -1 1002 Result within DOC (709-1396). Name Analyse Group Comments			2.7		96%	Result is within DQOs (70%-130%).	
o-system 0.7 0.4 000 Result within DOSA (70%+30%). Laboratory Control Spike (LGS) Analyses Laboratory Control Spike (LGS) Analyses Controls Major Group Al.S. The LCS recovery for Entro-o-tolucine 1(0%) was greater than the uper laboratory based DOS. (46-912%). Refer to overall comments. Organophosphorus Pesilodise Al.S. The LCS recovery for Entro-o-tolucine 1(0%) was greater than the uper laboratory based DOS. (46-912%). Refer to overall comments. Organophosphorus Pesilodise Al.S. The LCS recovery for Entro-o-tolucine 1(0%) was greater than the uper laboratory based DOS. (46-912%). Refer to overall comments. Major Group Al.S. The LCS recovery for Entro-o-tolucine 1(0%) was greater than the uper laboratory based DOS. (46-912%). Refer to overall comments. Major Group Al.S. The LS recovery for Entro-o-tolucine 1(0%) was greater than the uper laboratory based DOS. Mainty Societ Al.S. The LS recovery for Entro-o-tolucine 1(0%) was greater than the uper laboratory based DOS. Mainty Group Al.S. The LD RPD tor zinc (2%) was outside of laboratory based DOS. Mainty Group Field TopLicates (CD) Analyses Mainty Group Field TopLicates (CD) Analyses Analyte Group TopLicate D The RPD were within acceptable DOS. Analyte Group Field TopLicates (CD) Analyses Comments							
Napithisterie ct ct Does Result is within DOOS (70%)-37%). Analyte Group Comments Nitroatomatics and Retones ALS. The LCS recovery for Shuric-O-clouden (16%) was greater than the user laboratory based DOOs (48-99%). <i>Refer to overall comments.</i> Organophosphous Plasticide ALS. The LCS recovery for Shuric-O-clouden (16%) was greater than the user laboratory based DOOs (48-99%). <i>Refer to overall comments.</i> Analyte Group ALS. The LCS recovery for Shuric-O-clouden (16%) was greater than the user laboratory based DOOs. Matrix Spin (MS) Analyses Comments Matrix Spin (MS) Analyses Comments Analyte Group ALS. The LOS recovery to provide the common state structure to a contract to the coverall comments. Matrix Spin (MS) Analyses Comments Analyte Group ALS. The LD RPD for zinc (24%) was outside of laboratory based DOOs (0-20%). <i>Refer to overall comments.</i> Analyte Group Primary ID Analyte Group Primar							
Laboratory Control Splice (LGS) Analyses Analysic Group Laboratory Control Splice (LGS) Analyses Organophosphorus Pesitodies ALS: The LCS recovery/for Entro-obside (10%) was graved than the upper laboratory based DODs (46-112%). Refer to overall comments. Organophosphorus Pesitodies ALS: The LCS recovery/for Entro-obside (10%) was graved than the upper laboratory based DODs. Matrix Splice (108) Analyses Comments Analyte Group Natrix Splice (108) Analyses Metals ALS: The MS recovery for export in antrymotic sample EN160131-001 was read obtermined. Refer to overall comments. Metals ALS: The MS recovery for export in antrymotic sample EN160131-001 was read obtermined. Refer to overall comments. Metals ALS: The DR Poly or zinc (24%) was outside of laboratory based DODs. Metals Comments Comments ALS: The UR POP to zinc (24%) was outside of laboratory based DODs. Comments All BH01_0.1 Ocgs100 M IP PDP were within acceptable DODs. Analyte Group Primary ID Duplicate ID All PP PO were within acceptable DODs. Analyte Group Primary ID Duplicate ID All PP PO were within acceptable DODs. Analyte Group Primary ID Duplicate ID <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Analyce Group Comments Nitrosormatics and Ketoms ALS: The LCS: recovery for Sensor 2000 (Sensor 2000) (Se	Марнинајене			oratory Con			
Nitroaronatics and Keitons A.S. The LCS recovery for Shaho-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS The LCS recovery for Shaho-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS S Thru CLS recovery for Shaho-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS S Envirade. ALS The LCS recovery for Shahoo-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS Envirade. ALS Thru LCS recovery for Shahoo DPD in an anyte ENTROS 154-001 was not determined. <i>Refer to overal comments</i> . Matrix Spine (MLS) Analyses Comments Meals ALS Thru LD RPD for zine (24%) was outside of laboratory based DQOs (40-20%). <i>Refer to overal comments</i> . Analyte Group Primary (1) Duplicates (10) Analyses Comments Analyte Group Primary (1) Duplicates (10) Analyses Comments Analyte Group Primary (1) Duplicates (10) Analyses Comments Analyte Group Primary (1) CAR66 Thru PDPs were within acceptable DQOs. Comments Analyte Group Primary (2) Structure to coveral comments. ALS The surrogate recovery for 2 Advorophene (200%) was less than laboratory DQOs (13-149%). <i>Refer to </i>			Lab	ioratory con	III OF OPIKE (ECO) Analyses	
Nitroaronatics and Keitons A.S. The LCS recovery for Shaho-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS The LCS recovery for Shaho-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS S Thru CLS recovery for Shaho-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS S Envirade. ALS The LCS recovery for Shahoo-o-builden (199%) was greater than the upper laboratory based DQOs (48-199%). <i>Refer to overal comments</i> . ALS Envirade. ALS Thru LCS recovery for Shahoo DPD in an anyte ENTROS 154-001 was not determined. <i>Refer to overal comments</i> . Matrix Spine (MLS) Analyses Comments Meals ALS Thru LD RPD for zine (24%) was outside of laboratory based DQOs (40-20%). <i>Refer to overal comments</i> . Analyte Group Primary (1) Duplicates (10) Analyses Comments Analyte Group Primary (1) Duplicates (10) Analyses Comments Analyte Group Primary (1) Duplicates (10) Analyses Comments Analyte Group Primary (1) CAR66 Thru PDPs were within acceptable DQOs. Comments Analyte Group Primary (2) Structure to coveral comments. ALS The surrogate recovery for 2 Advorophene (200%) was less than laboratory DQOs (13-149%). <i>Refer to </i>	Analyte Gro	auc				Comments	
Organophosphorus Pesiticides ALS: A Envirold AI other for Calibro op (27:7) space lasts than the lower lower and introvation based DOOs. Matrix Splice (MS) Analyses Comments Als: A Envirold AI other for Capper in anonymous sample EV19061 14:00 twos not determined. <i>Refer to overall comments</i> . Als: A Envirold AI other for Capper in anonymous sample EV19061 14:00 twos not determined. <i>Refer to overall comments</i> . Als: A Envirold AI other for Capper in anonymous sample EV19061 14:00 twos not determined. <i>Refer to overall comments</i> . Als: A Envirold AI other for Capper in anonymous sample EV19061 14:00 twos not determined. <i>Refer to overall comments</i> . Als: A Envirold AI other for Capper in anonymous sample EV19061 14:00 twos not determined. <i>Refer to overall comments</i> . Analyte Group Single EV19061 14:00 twos not determined. <i>Refer to overall comments</i> . Ali Extra DIP of zame (24%) was outside of laboratory based DOOs. Analyte Group Primary ID Occaso II (17:7) (17:10;12:10;12:10;17) (17:10;12:10;17) (17:10;12:10;17) (17:10;12:10							
All & Bervirality All other LCS microeneries were within aboratory based DOOs. Matrix Comments Metain All.S: The Microenery for Export in anonymotics samples EN1905134-001 was not determined. <i>Refer to overall comments</i> . All.S: The Microenery for Export in anonymotics samples EN1905134-001 was not determined. <i>Refer to overall comments</i> . Metain All.S: The Microenery for Export in anonymotics samples EN1905134-001 was not determined. <i>Refer to overall comments</i> . Metain ES1930516022 All.S: The LD RPD for zinc (24%) was outside of laboratory based DOOs. Metain ES1930516022 All.S: The LD RPD for zinc (24%) was outside of laboratory based DOOs (0-20%). <i>Refer to overall comments</i> . All BH01 0.1 Ocafio All PT RPDs were within acceptable DOOs. Analyte Group Primary ID Ouglicate ID Comments All BH01 0.1 OCG100 All PT RPDs were within acceptable DOOs. Comments All BH01 0.1 OCG100 All PT RPDs were within acceptable DOOs. Comments All BH01 0.1 OCG100 All PT RPDs were within acceptable DOOs. Comments All BH01 0.1 OCG100 All PT RPDs were within acceptable DOOs. Comments All <td>Nitroaromatics and</td> <td>1 Kelones</td> <td>ALS: The LCS recovery for 5-</td> <td>nitro-o-tolulai</td> <td>ine (108%) v</td> <td>as greater than the upper laboratory based</td> <td>DQOS (48-99%). Refer to overall comments.</td>	Nitroaromatics and	1 Kelones	ALS: The LCS recovery for 5-	nitro-o-tolulai	ine (108%) v	as greater than the upper laboratory based	DQOS (48-99%). Refer to overall comments.
Matrix Sple (KB), Analyses Metals ALS: The MS recovery for opport in anonymotic sample EM19601440 was not determined. <i>Refer to overall comments</i> . ALS: Envirolation Laboratory Duplicates (LD) Analyses Analyte Group Comments Analyte Group Comments All Event State S	Organophosphorus	Pesticides	ALS: The LCS recovery for die	chlorvos (27.	.7%) was les	s than the lower laboratory based DQOs (4	6-112%). Refer to overall comments.
Analyte Group Comments Metail ALS: The MS recoveries were within aboratory based DOS. Als & Envirolab. Planter MS recoveries were within aboratory based DOS. Analyte Group Sample ID Metail Contractory Duplicates (LD) Analyses Analyte Group Sample ID Metail Estrocorrise were within acceptable DOS. Analyte Group Primary ID Duplicate ID ALS: The LD RPD for zinc (24%) was outside of laboratory based DOS. Analyte Group Primary ID Duplicate ID All BHO1 0.1 OCA100 All BHO1 0.1 OCA100 All BHO1 0.1 OCA100 All BHO1 0.1 OCA100 All BHO1 0.1 OCCA100 All FT RPDs were within acceptable DOS. Comments Analyte Group Analyte Group Comments All BHO1 0.1 OCC3100 All FT RPDs were within acceptable DOS. All BHO1 0.1 OCC3100 All FT RPDs were within acceptable DOS. All Comments Comments All	-		ALS & Envirolab: All other LC	S recoveries	were within	laboratory based DQOs.	
Metals ALS: The MS request proceedings were within aboratory based DQs. Laboratory Duplicates (LD) Analyses Laboratory Duplicates (LD) Analyses Analyte Group Sample ID Comments Single ID Single ID Comments Analyte Group Primary ID Duplicates (FD) Analyses Analyte Group Primary ID Duplicates (FD) Analyses Analyte Group Primary ID Control All BH01_0.1 Codition All BH01_0.1 Codition All BH01_0.1 Codition All BH01_0.1 Codition Surrogate Compound Monitoring Analyses Comments Analyte Group Analyte Group Comments All BH01_0.1 Codition All FT RPDs were within acceptable DODs Acid Extractable Surrogate Comments Comments All BH01_0.1 Codition All FT RPDs were within acceptable DODs All All FT RPDs were within acceptable DODs Comments All All FT RPDs were within acceptable DODs Coditintononononononononononononononon				Matrix S	pike (MS) A	nalyses	
Als. & Envirab. Allother MS recoveries were within laboratory based DQOs. Analyte Group Sample ID (Anonymous) Metals Comments Analyte Group Primary ID All. The D RPDs were within acceptable DQOs. Analyte Group Primary ID All. BHO 1.0.1 CCA160 All BHO 1.0.1 CCA100 All BHO 1.0.1 Comments All BHO 1.0.1 CCA100 All Strongate Compound Monitoring Analyses Comments All BHO 1.0.1 Class The surrogate compound Monitoring Analyses All Strongate Compound Monitoring Analyses Comments All - All Strongate Convert Conve	Analyte Gro	oup				Comments	
Laboratory Duplicates (LD) Analyses Metals ES 102815-002 (Ancrynnau) A.S. The LD RPD for zinc (24%) was outside of laboratory based DQOs (0-20%). Refer to overall comments. Analyte Group Primary ID Duplicate (ID) Analyses Comments Analyte Group Primary ID Duplicate (IP) Analyses Comments Analyte Group Primary ID Duplicate (IP) Analyses Comments Analyte Group Primary ID Triplicate (IP) Analyses Comments Analyte Group Primary ID Cold OW All FT RPDs were within acceptable DOOs. Comments Analyte Group 2-Marylet(A) Surrogate Compound Monitoring Analyses Comments Primotics Analyte Group 2-Marylet(A) ALS: The surrogate recovery for 2-Monophenol (8.07%) was less than laboratory DOOs (22-128%). Refer to overall comments. Primotics 2-Monophenol-ALS: The surrogate recovery for 2-Monophenol (8.07%) was less than laboratory DOOs (12-128%). Refer to overall comments. Primotics All - ALS: The surrogate recovery for 2-Monophenol (8.07%) was less than laboratory DOOs (13-121%). Refer to overall comments. LS: The surrogate recovery for 2-Monophenol (8.07%) was less than laboratory DOOs (13-121%). Refer to overall comments.	Metals		ALS: The MS recovery for cop	oper in anony	mous sampl	e EN1906134-001 was not determined. Re	fer to overall comments.
Analyte Group Sample D ES1828(15:002) (Anonymous) Comments Analyte Group Primary ID Primary ID All S: The LD RPD for zinc (24%) was outside of laboratory based DQOs (0-20%). Refer to overall comments. Field Duplicates (FD) Analyses Analyte Group Primary ID All Duplicate ID OCA100 All FD RPDs were within acceptable DQOs. Field Triplicates (FT) Analyses Analyte Group Primary ID All Duplicate ID OCA100 All FT RPDs were within acceptable DQOs. Surrogate Compound Monitoring Analyses Analyte Group Primary ID All Triplicate ID OCA100 All FT RPDs were within acceptable DQOs. Surrogate Compound Monitoring Analyses Analyte Group Analyte Group Analyte Group Comments Acid Extractable Surrogate 2-thiorophenol ALS: The surrogate recovery for 2-thiorophenol (0.8%) was less than laboratory DQOS (22-14%). Refer to overall comments. Acid Extractable Surrogate 2-thiorophenol ALS: The surrogate recovery for 2-chiorophenol-04 (20%) was less than laboratory DQOS (22-14%). Refer to overall comments. Acid Extractable Surrogate 2-thiorophenol ALS: The surrogate recovery for 2-chiorophenol-04 (20%) was less than laboratory DQOS (22-14%). Refer to overall comments. Acid Extractable Surrogate covery for 2-chiorophenol (0.8%) was less than laboratory DQOS (22-14%). Refer to overall comments. 2-thiorophenol	-		ALS & Envirolab: All other MS	recoveries v	were within la	aboratory based DQOs.	
Analyte Group Sample D ES1828(15:002) (Anonymous) Comments Analyte Group Primary ID Primary ID All S: The LD RPD for zinc (24%) was outside of laboratory based DQOs (0-20%). Refer to overall comments. Field Duplicates (FD) Analyses Analyte Group Primary ID All Duplicate ID OCA100 All FD RPDs were within acceptable DQOs. Field Triplicates (FT) Analyses Analyte Group Primary ID All Duplicate ID OCA100 All FT RPDs were within acceptable DQOs. Surrogate Compound Monitoring Analyses Analyte Group Primary ID All Triplicate ID OCA100 All FT RPDs were within acceptable DQOs. Surrogate Compound Monitoring Analyses Analyte Group Analyte Group Analyte Group Comments Acid Extractable Surrogate 2-thiorophenol ALS: The surrogate recovery for 2-thiorophenol (0.8%) was less than laboratory DQOS (22-14%). Refer to overall comments. Acid Extractable Surrogate 2-thiorophenol ALS: The surrogate recovery for 2-chiorophenol-04 (20%) was less than laboratory DQOS (22-14%). Refer to overall comments. Acid Extractable Surrogate 2-thiorophenol ALS: The surrogate recovery for 2-chiorophenol-04 (20%) was less than laboratory DQOS (22-14%). Refer to overall comments. Acid Extractable Surrogate covery for 2-chiorophenol (0.8%) was less than laboratory DQOS (22-14%). Refer to overall comments. 2-thiorophenol			Ŀ	aboratory D	uplicates (L	D) Analyses	
Metals E51928561002 (Anonymous) ALS: The LD RPD for zinc (24%) was outside of laboratory based DQOs (0-20%). Refer to overall comments. Analyte Group Primary ID Duplicate ID All FD RPDs were within acceptable DQOs. All BH01.0.1 OCA100 All FD RPDs were within acceptable DQOs. All BH01.0.1 OCA100 All FT RPDs were within acceptable DQOs. All BH01.0.1 OCB100 All FT RPDs were within acceptable DQOs. All BH01.0.1 OCB100 All FT RPDs were within acceptable DQOs. Analyte Group Analyte(S) Comments All BH01.0.1 OCB100 All FT RPDs were within acceptable DQOs. Acid Extractable Surrogate Surrogate compound Monitoring Analyses Comments Acid Extractable Surrogates All S: The surrogate recovery for 2-floorphenol (8.07%) was less than laboratory DQOs (12-12%). <i>Refer to overall comments</i> . All - ALS: The surgate recover for 2-floorphenol (0.07%) was less than laboratory DQOs (13-12%). <i>Refer to overall comments</i> . All - ALS: The surgate recover for 2-floorphenol (0.07%) was less than laboratory DQOs (13-12%). <i>Refer to overall comments</i> . All - ALS: The surgate recover	Analyte Gro	auc	Sample ID		· · · ·	Comme	ents
Initials (Anonymous) Inc. Inter Dr. Net Just State (EX), was outside of radio and y design Dr. Refer to Overlan Continents. Field Duplicates (FD) Analyses Field Duplicates (FD) Analyses Comments All BH01.0.1 OCA100 All FD RPDs were within acceptable DOOs. Field Triplicates (FT) Analyses Comments Field Triplicates (FT) Analyses Analyte Group Primary ID Toplicate ID Field Triplicates (FT) Analyses Analyte Group Analyte (S) Comments Comments All BH01.0.1 OCB100 All FT RPDs were within acceptable DOOs. Analyte Group Analyte(S) Comments Comments Acid Extractable Surrogate Charget company (Comments) Comments Acid Extractable Surrogate ALIS: The surrogate recovery for 2-Abirophenol (8.07%) was less than laboratory DOOs (3:121%). <i>Refer to overall comments</i> . 2-chetrophenol-D4 ALIS: The surrogate recovery for 2-Abirophenol-16 (9.5%) was less than laboratory DOOs (3:121%). <i>Refer to overall comments</i> . 3-1 ALI ALIS: The surrogate recover for 2-Abirophenol-16 (9.5%) was less than laboratory DOOs (3:121%). <i>Refer to overall comments</i> . 4-1 ALIS: The surrogate recover for 2-Abirophenol-16 (9.5%) was less than lab							
Field Duplicates (FD) Analyses Analyte Group Primary ID Duplicate ID Comments All BH01.0.1 CCA100 All FD RPDs were within acceptable DQOs. Field Triplicate (FT) Analyses Analyte Group Primary ID Triplicate ID Field Triplicate ID Comments All BH01.0.1 CCB10 All FT RPDs were within acceptable DQOs. Comments All BH01.0.1 CCB10 All FT RPDs were within acceptable DQOs. Comments Analyte Group Analyte(6) Surrogate Compound Monitoring Analyses Comments Comments Acid Extractable Surrogate Phenol-66 LS: The surrogate recover/for 2-thorophenol-D4 (20%) was less than laboratory DQOs (32-18%). Refer to overall comments. 2.46-tribromophenol-AL (S: The surrogate recover/for 2-thorophenol-D4 (20%) was less than laboratory DQOS (32-18%). Refer to overall comments. All - ALS & Envirolab: All surrogate recover/for 2-thorophenol-D4 (20%) was less than laboratory DQOS (32-18%). Refer to overall comments. LS: The surrogate recover/for 2-thorophenol-D4 (20%) was less than laboratory DQOS (32-18%). Refer to overall comments. All - ALS & Envirolab: All surrogate recover/for 2-thorophenol-D4 (20%) was less than laboratory DQOS (32-18%). Refer to overall comments.	Metals			ALS: The LI	D RPD for zi	nc (24%) was outside of laboratory based I	JQOS (0-20%). Refer to overall comments.
Analyte Group Primary ID Duplicate ID Comments All BH01_0.1 OCA100 All FD RPDs were within acceptable DOOs. Analyte Group Primary ID Triplicate ID Comments Analyte Group Primary ID Triplicate ID Comments Analyte Group Analyte(S) Comments Comments Analyte Group Analyte(S) Comments Comments Acid Extractable Surrogate 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol (8.07%) was less than laboratory DOOs (32-12%). <i>Refer to overall comments</i> . 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol (2.0%) was less than laboratory DOOs (32-12%). <i>Refer to overall comments</i> . 2-d-thorophenol ALS: The surrogate recovery for 2-fluorophenol (2.0%) was less than laboratory DOOs (32-12%). <i>Refer to overall comments</i> . 2-d-thorophenol ALS & Envirolab: All surrogate recovery for 2-fluorophenol (3.2%) was less than laboratory DOOs (32-12%). <i>Refer to overall comments</i> . All - ALS & Envirolab: All surrogate recovery for 2-fluorophenol (3.2%) was less than laboratory DOOs (32-12%). <i>Refer to overall comments</i> . LS: The expected OC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SMI) and TAH - Semi volatile Fraction in water. This is not expected to affec				Field Dupl	licates (ED)	Analyses	
All BH01_0_1 QC4007 [All FD RPDs were within acceptable DQOs. Field Triplicates (FT) Analyses Analyte Group Primary ID Triplicate ID Comments All BH01_0_1 QC500 All FT RPDs were within acceptable DQOs. Surrogate Compound Monitoring Analyses Comments Analyte Group Analyte(s) Comments 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol (6.07%) was less than laboratory DQOs (22-fl49%). <i>Refer to overall comments</i> . 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol (6.07%) was less than laboratory DQOs (22-fl49%). <i>Refer to overall comments</i> . 2-fluorophenol-D4 ALS: The surrogate recovery for 2-fluorophenol (6.07%) was less than laboratory DQOs (21-fl29%). <i>Refer to overall comments</i> . 2-fluorophenol-D4 ALS: The surrogate recovery for 2-fluorophenol (6.07%) was less than laboratory DQOs (12-fl29%). <i>Refer to overall comments</i> . All - ALS & Envirolab: All surrogate recovery for 2-fluorophenol (8.07%) was less than laboratory DQOS (12-fl29%). <i>Refer to overall comments</i> . LS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of this data set as the zater sample submitted for analysis in bath. ES192834 was a QA/QC sample (instate blank) and as such does not represent the primary project mat	Analyta Crayn	Drimery ID	Dunlingto ID	Ticlu Dupi	neures (i b)		
Field Triplicates (FT) Analyses Analyte Group Primary ID Triplicate IC Comments All BH01_0.1 OCB100 All FT RPDs were within acceptable DQOs. Surrogate Compound Monitoring Analyses Comments Comments Acid Extractable Surrogate 2.4.0urophenol. ALS: The surrogate recovery for 2-fluorophenol. 66 (10.8%) was less than laboratory DQOS (22-149%). <i>Refer to overall comments</i> . 24.6-tribromphenol-ALS: The surrogate recovery for 2-chlorophenol-64 (10.8%) was less than laboratory DQOS (32-128%). <i>Refer to overall comments</i> . 24.6-tribromphenol ALS: The surrogate recovery for 2-chlorophenol-64 (10.8%) was less than laboratory DQOS (32-128%). <i>Refer to overall comments</i> . All - ALS & Envirolab: All surrogate recovery for 2-A(6-tribromophenol (9.52%) was less than laboratory DQOS (32-128%). <i>Refer to overall comments</i> . LS: The surgate recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQOS. 12-0 LS: The LCS recovery for 5-nitro-o-toluidine (108%) and secontaritabne of 5-nitro-o-toluidine (108%) and as each deer somples analysed. 12: The LCS recovery for 5-nitro-o-toluidine vere less than the laboratory limit of reporting. This is not expected to affect the validity of this data set as the validity of this data set as the somples analysed. LS: The LCS recovery for 5-nitro-o-toluidine (108%) and as concentrations of 5-nitro-o-toluidine vere less than the laboratory limit of reporting for t					e were withi		ants
Analyte Group Primary ID Triplicate ID Comments All BH01_0.1 QCB100 All FT RPDs were with acceptable DQOs. Surrogate Compound Monitoring Analyses Comments Comments Add Extractable Surrogate 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol (6.07%) was less than laboratory DQOs (32-128%). Refer to overall comments. 2-chlorophenol-D4 ALS: The surrogate recovery for 2-fluorophenol-D4 (20%) was less than laboratory DQOs (32-128%). Refer to overall comments. 2-diorophenol-D4 ALS: The surrogate recovery for 2-4.6-tribromophenol (5.07%) was less than laboratory DQOs (13-121%). Refer to overall comments. All - ALS & Envirolab: All surrogate recover for 2-4.6-tribromophenol (5.27%) was less than laboratory DQOs (13-121%). Refer to overall comments. LS: The expected OC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - 6M) and TRH - 6m i volatile Fraction in water. This is not expected to affect the validity of this data set as the rater sample submitted for analysis in batch ES1928334 was a QA/QC sample (instate blank) and as such does not represent the primary project matrix (soll). LS: The LS: Recovery for C-fnitro-obluidine (10%%) was less than laboratory DQOs (14-12%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the valide of mice (r10%%) and as concentrations of 5-nitro-obluidine (10%%) was a QA/QC sample (instate blank) and as such does not represontil tor for the samples		DI101_0.1	L QCAIDO				
All BH01_0.1 OcB100 AIF T RPDs were within acceptable DQOs. Surrogate Compound Monitoring Analyses Comments Acid Extractable Surrogates 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol (8.07%) was less than laboratory DQOs (29-149%). <i>Refer to overall comments</i> . 2-chlorophenol-db ALS: The surrogate recovery for 2-fluorophenol-dd (10.8%) was less than laboratory DQOs (22-128%). <i>Refer to overall comments</i> . 2-chlorophenol-db ALS: The surrogate recovery for 2-chlorophenol-dd (20%) was less than laboratory DQOs (23-128%). <i>Refer to overall comments</i> . 2-chlorophenol-db ALS: The surrogate recovery for 2-chlorophenol-dd (20%) was less than laboratory DQOs (23-128%). <i>Refer to overall comments</i> . All - ALS & Envirolab: All surrogate recover for 5-fluorophenol-dd (20%) was greater than laboratory DQOS (13-121%). <i>Refer to overall comments</i> . LS: The covery for 5-fluorophenol-db ALS & Envirolab: All surrogate recover for 5-fluorophenol (800%) was greater than a data such does not represent the primary project matrix (soli). LS: The CS: recovery for dichloroves (27.7%) was less than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the xceedance is considered minor (<10%) and sas concentrations of 5-ntro-o-toluidine (10%) was greater than or epecified to varial comments.	Analyte Group	Primary ID	Triplicate ID				nte
Surrogate Compound Monitoring Analyses Analyte Group Analyte(s) Comments Acid Extractable Surrogates 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol (8.07%) was less than laboratory DQOs (32-128%). <i>Refer to overall comments</i> . 2-chlorophenol-D4 ALS: The surrogate recovery for 2-chlorophenol (0.07%) was less than laboratory DQOs (32-128%). <i>Refer to overall comments</i> . 2-chlorophenol-D4 ALS: The surrogate recovery for 2-chlorophenol-D4 (0.5%) was less than laboratory DQOS (32-128%). <i>Refer to overall comments</i> . All - ALS & Envirolab: All surrogate recover for 2-chlorophenol (9.52%) was less than laboratory DQOS (32-128%). <i>Refer to overall comments</i> . LS: The surrogate recover for 5-nitro-o-toluidine ont met for LD and MS (water) analysis of PAH/Phenols (GCMNS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the rater sample submitted for analysis in batch ES1298334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soli). LS: The LCS recovery for 5-nitro-o-toluidine under lever laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the rater sample sanalysed. LS: The LCS recovery for 5-nitro-o-toluidine were lever laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the rater sample sanalysed. LS: The LCS recovery for 5-nitro-o-toluidine were lever lab				All FT RPD	s were within		
Analyte Group Analyte(s) Comments Acid Extractable Surrogates 2-fluorophenol ALS: The surrogate recovery for 2-fluorophenol-04 (0.07%) was less than laboratory DQOs (32-128%). <i>Refer to overall comments</i> . Acid Extractable Surrogates 2-chlorophenol-D4 ALS: The surrogate recovery for 2-chlorophenol-04 (20%) was less than laboratory DQOs (32-128%). <i>Refer to overall comments</i> . All 2-chlorophenol-D4 ALS: The surrogate recovery for 2-chlorophenol (9.52%) was less than laboratory DQOs (13-121%). <i>Refer to overall comments</i> . All - ALS: The surrogate recovery for 2-chlorophenol-04 (20%) was less than laboratory DQOs (13-121%). <i>Refer to overall comments</i> . LS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the valera sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soil). LS: The LCS recovery for for-tro-o-toluidine (108%) was greater than the upper laboratory based DQOs (46-99%) indicating the potential for ower-reporting. This is not expected to affect the validity of this data set as the valedary bind (100%) was greater than the upper laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as the validity of this data set as in the laboratory limit of reporting. This is not expected to affect the validity of this data set as concentrator a distrot dover prime for the samples analysed.<	Ali	D101_0.1					
Acid Extractable Surrogate 2-fluorophenol ALs: The surrogate recovery for 2-fluorophenol (6.0%) was less than laboratory DQCs (22-149%). Refer to overall comments. Acid Extractable Surrogate Phenol-d6 ALS: The surrogate recovery for 2-chlorophenol-D4 (20%) was less than laboratory DQCs (32-128%). Refer to overall comments. All 2-chlorophenol-D4 ALS: The surrogate recovery for 2-chlorophenol-D4 (20%) was less than laboratory DQCs (32-128%). Refer to overall comments. All - ALS: The surrogate recovery for 2-chlorophenol-D4 (20%) was less than laboratory DQCs (32-128%). Refer to overall comments. All - ALS: The surrogate recovery for 2-chlorophenol-D4 (20%) was less than laboratory DQCs (32-128%). Refer to overall comments. LS: The surrogate recovery for 2-dictrophenol-D4 (20%) was less than laboratory DQCs (32-128%). Refer to overall comments. LS: The LCS recovery for churce-on text for LD and MS (water) analysis of PAH/Phenols (GC/MS-SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of this data set as the zater sample submitted for analysis in batch ES1928334 was a QA/CC sample (rinsate blank) and as such does not represent the primary project matrix (soil). LS: The LCS recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQCs (46-12%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the zater sample samalysed. LS: The LCS recovery for 5-nitro-o-toluidine were less than thaboratory DMOs (346-12%) indicating t	Analyte Group	Analyte(s)	Guite	ogate oomp			
Acid Extractable Surrogate Phenol-d6 ALS: The surrogate recovery for 2-chlorophenol-D4 (20%) was less than laboratory DQOs (32-128%). <i>Refer to overall comments.</i> All 2-chlorophenol-D4 ALS: The surrogate recovery for 2-chlorophenol (3.52%) was less than laboratory DQOs (32-128%). <i>Refer to overall comments.</i> All - ALS: The surrogate recovery for 2-chlorophenol (3.52%) was less than laboratory DQOs (32-128%). <i>Refer to overall comments.</i> All - ALS & Envirolab: All surrogate recoveries were within laboratory based DQOs. Overall comments LS: The surrogate recoveries were within laboratory based DQOs. Lis: The considered minor (10%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of the data set as the valedary of re-indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentration of 5-nitro-o-tolidine were laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentrate dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentrate dichlory of reporting for the samples analysed. LS: The LCS recovery for colory of recovery for colory in the oreal communous of sample colory determined, background level greater than or equal to 4x spike level." This is not expected to affect the validity of this data set as concentration orean	Thaijte ereup		ALS: The surrogate recovery f	for 2-fluoroph	henol (8.07%). Refer to overall comments.
Action ALS: The surrogate recovery for 2-Ale-tribromophenol-D4 (20%) was less than laboratory DQOs (32-128%). Refer to overall comments. All - ALS & Envirolab: All surrogate recovery for 2,4,6-tribromophenol (9,52%) was less than laboratory DQOs (13-121%). Refer to overall comments. All - ALS & Envirolab: All surrogate recovery for 2,4,6-tribromophenol (9,52%) was less than laboratory DQOs (13-121%). Refer to overall comments. LS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenots (CGCMS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the vater sample submitted for analysis in batch ES1928334 was a QA/QC sample (instate blank) and as such does not represent the primary project matrix (suil). LS: The LCS recovery for dichlorus (27.7%) was less than the upper laboratory based DQOs (46-112%) indicating the potential for ouder-reporting. This is not expected to affect the validity of this data set as the validity of the samples analysed. LS: The LCS recovery for chiloborus (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentra for chiloborus expects of the operations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for chiloborus (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentra in elaboratory inter of representative of the samples analysed. LS: The LC							
All ALS & Envirolab: All surrogate recoveries were within laboratory based DQOs. Overall Comments LLS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the vater sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soil). LLS: The LCS recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the xaeedance is considered minor (s10%) and as concentrations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentrate of chronos (27.7%) was less than the lower laboratory based DQOs. (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentrate of lachorvos were less than the laboratory limit of reporting for the sample sanalysed. LS: The MS recovery for cooper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to affect the validity of the data set as the exceedance is from an anonymous sample hich is unlikely to be representative of project sample matrices. LS: The LD RPD for the analyte group metals for sample matrices. <td>Asid Eutrostable Surregates</td> <td>2-chlorophenol-D4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Asid Eutrostable Surregates	2-chlorophenol-D4					
Overall Comments LS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the rater sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soli). LS: The LCS recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as thi xacedance is considered minor (<10%) and as concentrations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed.	Acid Extractable Surrogates						
Overall Comments LS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the rater sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soli). LS: The LCS recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as thi xacedance is considered minor (<10%) and as concentrations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed.	Acid Extractable Surrogates	2.4.6-tribromophenol					
LS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the vater sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soil). LS: The LCS recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the xacedance is considered minor (<10%) and as concentrations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentral f dichlorvos were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to a feet the validity of this data set as the validity of this data set as the validity of the data set as the validity to be representative of project sample and is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyt		2.4.6-tribromophenol	ALS & Enviroloh: All surres		wore within !		
LS: The expected QC frequencies were not met for LD and MS (water) analysis of PAH/Phenols (GC/MS - SIM) and TRH - Semi volatile Fraction in water. This is not expected to affect the validity of the data set as the vater sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soil). LS: The LCS recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the xacedance is considered minor (<10%) and as concentrations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentral f dichlorvos were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to a feet the validity of this data set as the validity of this data set as the validity of the data set as the validity to be representative of project sample and is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyt		2.4.6-tribromophenol	ALS & Envirolab: All surrogate	e recoveries	were within I	aboratory based DQUs.	
 vater sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soil). LS: The LCS recovery for 5-hitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the xceedance is considered minor (<10%) and as concentrations of 5-hitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentrat f dichlorvos were less than the laboratory limit of reporting for the samples analysed. LS: The LDS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to a frect the validity of this data set as is an anonymous sample and is not expected to be representative of the sample matrix. LS: The LD PD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of the data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The LD route analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedanc		2.4.6-tribromophenol -	ALS & Envirolab: All surrogate	e recoveries v	were within I	aboratory based DQUs.	
 vater sample submitted for analysis in batch ES1928334 was a QA/QC sample (rinsate blank) and as such does not represent the primary project matrix (soil). LS: The LCS recovery for 5-hitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the xceedance is considered minor (<10%) and as concentrations of 5-hitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentrat f dichlorvos were less than the laboratory limit of reporting for the samples analysed. LS: The LDS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to a frect the validity of this data set as is an anonymous sample and is not expected to be representative of the sample matrix. LS: The LD PD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of the data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The LD route analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedanc		2.4.6-tribromophenol	ALS & Envirolab: All surrogate			-	
LS: The LCS recovery for 5-nitro-o-toluidine (108%) was greater than the upper laboratory based DQOs (48-99%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the xceedance is considered minor (<10%) and as concentrations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for over-reporting. This is not expected to affect the validity of this data set as the relative value of the samples analysed. LS: The LCS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample indich is unlikely to be representative of project sample matrices. LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated terformed By: Pauline Voukidis Checked By: Shane Doyle	All	-		Ove	erall Comme	nts	s not expected to affect the validity of the data set as the
xceedance is considered minor (<10%) and as concentrations of 5-nitro-o-toluidine were less than the laboratory limit of reporting for the samples analysed. LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOS (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentrations of the samples analysed. LS: The MS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample indich is unlikely to be representative or project sample matrices. LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated terformed By: Pauline Voukidis Checked By: Shane Doyle	All ILS: The expected QC frequencies	- were not met for LD and M	IS (water) analysis of PAH/Pher	Ove	erall Comme	nts RH - Semi volatile Fraction in water. This i	s not expected to affect the validity of the data set as the
LS: The LCS recovery for dichlorvos (27.7%) was less than the lower laboratory based DQOs (46-112%) indicating the potential for under-reporting. This is not expected to affect the validity of this data set as concentral f dichlorvos were less than the laboratory limit of reporting for the samples analysed. LS: The MS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. This batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated terformed By: Pauline Voukidis Checked By: Shane Doyle	All LS: The expected QC frequencies vater sample submitted for analysis	- were not met for LD and M in batch ES1928334 was a	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank)	Ove nols (GC/MS) and as such	erall Comme 5 - SIM) and ⊺ h does not re	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil).	
f dichlorvos were less than the laboratory limit of reporting for the samples analysed. LS: The MS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928516-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The LD RPD for the analyte group metals for sample ES1928516-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The LD RPD for the analyte group metals for sample ES1928516-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The Surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laborotory limits of reporting were orders of magnitude below the adopted site criteria. This batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated terformed By: Pauline Voukidis Checked By: Shane Doyle	All LS: The expected QC frequencies rater sample submitted for analysis LS: The LCS recovery for 5-nitro-o	- were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank, ater than the upper laboratory ba	Over nols (GC/MS) and as such ased DQOs (-	erall Comme - SIM) and ⊺ h does not re (48-99%) ind	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). cating the potential for over-reporting. This	
LS: The MS recovery for copper in EN1906134-001 (Anonymous) was not determined. As stated by ALS, "MS recovery not determined, background level greater than or equal to 4x spike level." This is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample inchich is unlikely to be representative of project sample matrices. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample inchich is unlikely to be representative of project sample matrices. LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laborotory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated terformed By: Pauline Voukidis Checked By: Shane Doyle	All ALS: The expected QC frequencies vater sample submitted for analysis ALS: The LCS recovery for 5-nitro-o ixceedance is considered minor (<1	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank, ater than the upper laboratory ba s of 5-nitro-o-toluidine were less	Over nols (GC/MS) and as such ased DQOs (s than the lab	erall Comme 5 - SIM) and 1 h does not re (48-99%) ind oratory limit	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). cating the potential for over-reporting. This of reporting for the samples analysed.	is not expected to affect the validity of this data set as this
ne validity of this data as this is an anonymous sample and is not expected to be representative of the sample matrix. LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample inchich is unlikely to be representative of project sample matrices. LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laborotory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated verformed By: Pauline Voukidis Checked By: Shane Doyle	All ALS: The expected QC frequencies vater sample submitted for analysis sLS: The LCS recovery for 5-nitro- kLS: The LCS recovery for dichlorvo	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations ss (27.7%) was less than th	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank) ater than the upper laboratory ba s of 5-nitro-otoluidine were less he lower laboratory based DQO:	Over nols (GC/MS) and as such ased DQOs (s than the lab	erall Comme 5 - SIM) and 1 h does not re (48-99%) ind oratory limit	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). cating the potential for over-reporting. This of reporting for the samples analysed.	is not expected to affect the validity of this data set as this
LS: The LD RPD for the analyte group metals for sample ES1928515-002 (Anonymous) was outside of DQOs. This is not expected to affect the validity of this data set as the exceedance is from an anonymous sample which is unlikely to be representative of project sample matrices. LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not elected and the laborotory limits of reporting were orders of magnitude below the adopted site criteria. This batch has been validated and is considered suitable for environmental interpretive use. Iote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated terformed By: Pauline Voukidis Checked By: Shane Doyle	All ALS: The expected QC frequencies vater sample submitted for analysis LLS: The LCS recovery for 5-nitro- ixceedance is considered minor (<1 LS: The LCS recovery for dichlorvo of dichlorvos were less than the labo	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations so (27.7%) was less than th oratory limit of reporting for	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank) ater than the upper laboratory be s of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed.	Over nols (GC/MS) and as such ased DQOs (a than the labor s (46-112%)	rall Comme - SIM) and T h does not re (48-99%) ind ioratory limit indicating th	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). cating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e	is not expected to affect the validity of this data set as this xpected to affect the validity of this data set as concentrat
which is unlikely to be representative of project sample matrices. LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laborotory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated verformed By: Pauline Voukidis Checked By: Shane Doyle	All ALS: The expected QC frequencies water sample submitted for analysis ALS: The LCS recovery for 5-nitro-o exceedance is considered minor (<1 ALS: The LCS recovery for dichlorvo dichlorvos were less than the labc ALS: The MS recovery for copper in	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations sp (27.7%) was less than th oratory limit of reporting for EN1906134-001 (Anonym	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank) ater than the upper laboratory be s of 5-nitro-o-toluidine were less he lower laboratory based DQO- the samples analysed. ous) was not determined. As sta	Over nols (GC/MS) and as such ased DQOs (ased DQOs (than the labor s (46-112%) ated by ALS,	erall Comme - SIM) and T h does not re (48-99%) ind oratory limit indicating th , "MS recove	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). cating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e	is not expected to affect the validity of this data set as this xpected to affect the validity of this data set as concentrat
LS: The surrogate recoveries for several Acid Extractable Surrogates was less than lower DQO s indicating the potential for under-reporting. This is not expected to affect the validity of the data set as phenols were not etected and the laboratory limits of reporting were orders of magnitude below the adopted site criteria. This batch has been validated and is considered suitable for environmental interpretive use. To be the validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated The formed By: Pauline Voukidis Checked By: Shane Doyle	All ALS: The expected QC frequencies water sample submitted for analysis ALS: The LCS recovery for 5-nitro-o xoccedance is considered minor (<1 ALS: The LCS recovery for dichlorvo of dichlorvos were less than the labo ALS: The MS recovery for copper in he validity of this data as this is an a	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations 0%) and as concentrations os (27.7%) was less than th oratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank), ater than the upper laboratory bas of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. loous) was not determined. As sta not expected to be representativ	Over nols (GC/MS) and as such ased DQOS (than the labo s (46-112%) ated by ALS, ve of the sam	rall Comme - SIM) and T h does not re (48-99%) ind ioratory limit indicating th , "MS recove nple matrix.	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). cating the potential for over-reporting. This is reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate	is not expected to affect the validity of this data set as this xpected to affect the validity of this data set as concentrat r than or equal to 4x spike level." This is not expected to a
etected and the laborotory limits of reporting were orders of magnitude below the adopted site criteria. his batch has been validated and is considered suitable for environmental interpretive use. lote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated Performed By: Pauline Voukidis Checked By: Shane Doyle	All ALS: The expected QC frequencies vater sample submitted for analysis LLS: The LCS recovery for 5-nitro- txceedance is considered minor (<1 LLS: The LCS recovery for dichlorvo of dichlorvos were less than the labo LLS: The LCS recovery for copper in he validity of this data as this is an a LLS: The LD RPD for the analyte gr	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations by (27.7%) was less than th oratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is 1 oup metals for sample ES1	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank, ater than the upper laboratory ba s of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. lous) was not determined. As stronot expected to be representativ 1928515-002 (Anonymous) was	Over nols (GC/MS) and as such ased DQOS (than the labo s (46-112%) ated by ALS, ve of the sam	rall Comme - SIM) and T h does not re (48-99%) ind ioratory limit indicating th , "MS recove nple matrix.	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). cating the potential for over-reporting. This is reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate	is not expected to affect the validity of this data set as thi xpected to affect the validity of this data set as concentral r than or equal to 4x spike level." This is not expected to a
his batch has been validated and is considered suitable for environmental interpretive use. Iote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated Performed By: Pauline Voukidis Checked By: Shane Doyle	All All All ALS: The expected QC frequencies vater sample submitted for analysis LS: The LCS recovery for 5-nitro-o xceedance is considered minor (<1 LS: The LCS recovery for dichlorvo f dichlorvos were less than the labo LS: The LCS recovery for copper in ne validity of this data as this is an a LS: The LD RPD for the analyte gr vhich is unlikely to be representativo	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations so (27.7%) was less than th oratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample matrice e of project sample matrice	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank) ater than the upper laboratory be s of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. lous) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as.	Over nols (GC/MS) and as such ased DQOs (ased DQOs (than the labor s (46-112%) ated by ALS, ve of the sam outside of D	erall Comme - SIM) and T h does not re (48-99%) ind ioratory limit indicating th , "MS recove nple matrix. iQOs. This is	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate s not expected to affect the validity of this d	is not expected to affect the validity of this data set as thi xpected to affect the validity of this data set as concentra r than or equal to 4x spike level." This is not expected to a ata set as the exceedance is from an anonymous sample
Iote: Data validation assesses each analyte in terms of all the data validation variables and only the exceedances and outliers are reported in this form. When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated Verformed By: Pauline Voukidis Checked By: Shane Doyle	All LS: The expected QC frequencies rater sample submitted for analysis LS: The LCS recovery for 5-nitro-or xeedance is considered minor (<1 LS: The BCS recovery for dichlorvor f dichlorvos were less than the labo LS: The BC recovery for copper in the validity of this data as this is an a LS: The LD RPD for the analyte gr inch is unlikely to be representativo LS: The Burrogate recoveries for si	were not met for LD and M in batch ES1928334 was a robuidine (108%) was grea 0%) and as concentrations os (27.7%) was less than tho ratory limit of reporting for EN1906134-2001 (Anonym anonymous sample and is r oup metals for sample ES1 e of project sample matrice everal Acid Extractable Sur	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank, ater than the upper laboratory ba s of 5-nitro-o-toluidine were less ne lower laboratory based DQO: 't he samples analysed. ious) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as. rorogates was less than lower DO	Over nols (GC/MS) and as such ased DQOS (ased DQOS (than the labor s (46-112%) ated by ALS, ve of the sam c outside of D QO s indicatin	erall Comme - SIM) and T h does not re (48-99%) ind ioratory limit indicating th , "MS recove nple matrix. iQOs. This is	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate s not expected to affect the validity of this d	is not expected to affect the validity of this data set as thi xpected to affect the validity of this data set as concentra r than or equal to 4x spike level." This is not expected to a ata set as the exceedance is from an anonymous sample
When concentrations are less than the LOR for both primary and duplicate/triplicate results, no RPDs are calculated erformed By: Pauline Voukidis Checked By: Shane Doyle	All LS: The expected QC frequencies ater sample submitted for analysis LS: The LCS recovery for 5-hitro- oxceedance is considered minor (<1 LS: The LCS recovery for dichlorvo dichlorvos were less than the lab LS: The MS recovery for copper in the validity of this data as this is an a LS: The LD RPD for the analyte gr hich is unlikely to be representativu LS: The ungate recoveries for si etected and the laborotory limits of	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations os (27.7%) was less than th oratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample ES1 e of project sample matrice everal Acid Extractable Sur reporting were orders of m	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank), ater than the upper laboratory bas of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. lous) was not determined. As sta not expected to be representativ 1928515-002 (Anonymous) was as. rrogates was less than lower DO nagnitude below the adopted situ	Over nols (GC/MS) and as such ased DQOS (ased DQOS (than the labor s (46-112%) ated by ALS, ve of the sam c outside of D QO s indicatin	erall Comme - SIM) and T h does not re (48-99%) ind ioratory limit indicating th , "MS recove nple matrix. iQOs. This is	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate s not expected to affect the validity of this d	is not expected to affect the validity of this data set as this xpected to affect the validity of this data set as concentral r than or equal to 4x spike level." This is not expected to ata set as the exceedance is from an anonymous sample
Performed By: Pauline Voukidis Checked By: Shane Doyle	All LS: The expected QC frequencies rater sample submitted for analysis LS: The LCS recovery for 5-nitro- xceedance is considered minor (<1 LS: The LCS recovery for dichlorvo f dichlorvos were less than the labo LS: The LCS recovery for copper in evalidity of this data as this is an a LS: The LD RPD for the analyte gr nhich is unlikely to be representativ LS: The surrogate recoveries for s etected and the laborotory limits of his batch has been validated and is	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations ss (27.7%) was less than th oratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample and e of project sample matrice everal Acid Extractable Sur reporting were orders of m s considered suitable for en	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank) ater than the upper laboratory ba s of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. ous) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as. rrogates was less than lower DQ angnitude below the adopted sit hvironmental interpretive use.	Over nols (GC/MS) and as such ased DQOs ((than the lab s (46-112%) ated by ALS, ve of the sam outside of D QO s indicatin e criteria.	arall Comme - SIM) and T h does not re (48-99%) ind (48-99%) ind indicating the indicating the ple matrix. bQOs. This is ing the poten	nts TRH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate a not expected to affect the validity of this d tial for under-reporting. This is not expected	is not expected to affect the validity of this data set as thi xpected to affect the validity of this data set as concentra r than or equal to 4x spike level." This is not expected to a ata set as the exceedance is from an anonymous sample
erformed By: Pauline Voukidis Checked By: Shane Doyle	All LS: The expected QC frequencies rater sample submitted for analysis LS: The LCS recovery for 5-nitro- xceedance is considered minor (<1 LS: The LCS recovery for dichlorvor f dichlorvos were less than the labor LS: The MS recovery for copper in evalidity of this data as this is an a LS: The LD RPD for the analyte gr thich is unlikely to be representativ LS: The surrogate recoveries for s stected and the laborotory limits of his batch has been validated and is	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations ss (27.7%) was less than th oratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample and e of project sample matrice everal Acid Extractable Sur reporting were orders of m s considered suitable for en	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank) ater than the upper laboratory ba s of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. ous) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as. rrogates was less than lower DQ angnitude below the adopted sit hvironmental interpretive use.	Over nols (GC/MS) and as such ased DQOs ((than the lab s (46-112%) ated by ALS, ve of the sam outside of D QO s indicatin e criteria.	arall Comme - SIM) and T h does not re (48-99%) ind (48-99%) ind indicating the indicating the ple matrix. bQOs. This is ing the poten	nts TRH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate a not expected to affect the validity of this d tial for under-reporting. This is not expected	is not expected to affect the validity of this data set as thi xpected to affect the validity of this data set as concentra r than or equal to 4x spike level." This is not expected to a ata set as the exceedance is from an anonymous sample
	All LS: The expected QC frequencies ater sample submitted for analysis LS: The LCS recovery for 5-nitro-o xceedance is considered minor (<1 LS: The LCS recovery for dichlorvor f dichlorvos were less than the labor LS: The MS recovery for copper in this is an a LS: The LD RPD for the analyte gr hich is unlikely to be representativ- LS: The surrogate recoveries for so tected and the laborotory limits of his batch has been validated and is ote: Data validation assesses each	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations ss (27.7%) was less than th ratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample and is of project sample matrice everal Acid Extractable Sur reporting were orders of m a considered suitable for en analyte in terms of all the	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank), ater than the upper laboratory bas of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. ious) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as. rrogates was less than lower DQ angnitude below the adopted situ hvironmental interpretive use. data validation variables and or	Over nols (GC/MS)) and as suct ased DQOS (than the lab is (46-112%) ated by ALS, ve of the sam ; outside of D QO s indicatin e criteria.	rall Comme - SIM) and T h does not re (48-99%) ind oratory limit indicating th , "MS recove nple matrix. NQOs. This is ing the poten adances and	nts TRH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate a not expected to affect the validity of this d tial for under-reporting. This is not expected	is not expected to affect the validity of this data set as this xpected to affect the validity of this data set as concentral r than or equal to 4x spike level." This is not expected to ata set as the exceedance is from an anonymous sample
	All LS: The expected QC frequencies ater sample submitted for analysis LS: The LCS recovery for 5-nitro-o coeedance is considered minor (<1 LS: The LCS recovery for dichlorvor dichlorvos were less than the labor LS: The MS recovery for copper in this data as this is an a LS: The LD RPD for the analyte gr hich is unlikely to be representativ LS: The surrogate recoveries for so tected and the laborotory limits of his batch has been validated and is ote: Data validation assesses each	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations ss (27.7%) was less than th ratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample and is of project sample matrice everal Acid Extractable Sur reporting were orders of m a considered suitable for en analyte in terms of all the	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank), ater than the upper laboratory bas of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. ious) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as. rrogates was less than lower DQ angnitude below the adopted sit hvironmental interpretive use. data validation variables and or	Over nols (GC/MS)) and as suct ased DQOS (than the lab is (46-112%) ated by ALS, ve of the sam ; outside of D QO s indicatin e criteria.	rall Comme - SIM) and T h does not re (48-99%) ind oratory limit indicating th , "MS recove nple matrix. NQOs. This is ing the poten adances and	nts TRH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate a not expected to affect the validity of this d tial for under-reporting. This is not expected	is not expected to affect the validity of this data set as this xpected to affect the validity of this data set as concentral r than or equal to 4x spike level." This is not expected to ata set as the exceedance is from an anonymous sample
	All LS: The expected QC frequencies ater sample submitted for analysis LS: The LCS recovery for 5-nitro- cceedance is considered minor (<1 S: The LCS recovery for dichlorvo dichlorvos were less than the labo LS: The LCS recovery for copper in e validity of this data as this is an a LS: The LD RPD for the analyte gr hich is unlikely to be representativ LS: The surrogate recoveries for s is batch has been validated and is ote: Data validation assesses each When concentrations are less than	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations ps (27.7%) was less than th pratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample and is of project sample matrice everal Acid Extractable Sur reporting were orders of m a considered suitable for en analyte in terms of all the the LOR for both primary a	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank), ater than the upper laboratory bas of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. ious) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as. rrogates was less than lower DQ angnitude below the adopted sit hvironmental interpretive use. data validation variables and or	Over nols (GC/MS)) and as suct ased DQOs (than the lab s (46-112%) ated by ALS, ve of the sam v outside of D QO s indicatin e criteria.	rall Comme - SIM) and T h does not re (48-99%) ind oratory limit indicating th "MS recove ngle matrix. NQOs. This is ing the poten indances and calculated	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate a not expected to affect the validity of this d tial for under-reporting. This is not expected butliers are reported in this form.	is not expected to affect the validity of this data set as this xpected to affect the validity of this data set as concentral r than or equal to 4x spike level." This is not expected to ata set as the exceedance is from an anonymous sample
	All ALS: The expected QC frequencies water sample submitted for analysis ALS: The LCS recovery for 5-nitro- exceedance is considered minor (<1 ALS: The LCS recovery for dichlorvo of dichlorvos were less than the labo ALS: The LCS recovery for copper in the validity of this data as this is an a ALS: The LD RPD for the analyte gro which is unlikely to be representativ ALS: The surrogate recoveries for si detected and the laborotory limits of This batch has been validated and is Note: Data validation assesses eact	were not met for LD and M in batch ES1928334 was a -toluidine (108%) was grea 0%) and as concentrations ps (27.7%) was less than th pratory limit of reporting for EN1906134-001 (Anonym anonymous sample and is r oup metals for sample and is of project sample matrice everal Acid Extractable Sur reporting were orders of m a considered suitable for en analyte in terms of all the the LOR for both primary a	IS (water) analysis of PAH/Pher a QA/QC sample (rinsate blank), ater than the upper laboratory bas of 5-nitro-o-toluidine were less he lower laboratory based DQO: the samples analysed. ious) was not determined. As st not expected to be representativ 1928515-002 (Anonymous) was as. rrogates was less than lower DQ angnitude below the adopted sit hvironmental interpretive use. data validation variables and or	Over nots (GC/MS) and as suct ased DQOs (than the lab s (46-112%) ated by ALS, ve of the sam outside of D QO s indicatin e criteria.	rall Comme - SIM) and T h does not re (48-99%) ind oratory limit indicating th "MS recove ngle matrix. NQOs. This is ing the poten indances and calculated	nts RH - Semi volatile Fraction in water. This i present the primary project matrix (soil). icating the potential for over-reporting. This of reporting for the samples analysed. e potential for under-reporting. This is not e ry not determined, background level greate a not expected to affect the validity of this d tial for under-reporting. This is not expected butliers are reported in this form.	is not expected to affect the validity of this data set as the xpected to affect the validity of this data set as concentra r than or equal to 4x spike level." This is not expected to ata set as the exceedance is from an anonymous sample

ATTACHMENT TO ITEM 24 - 28/10/19

Project: NSC Phase 1 ESA Waverton						_	
Duplicate Analysis RPDs		Sample ID	BH01_0.1	QCA100	QCB100	Ĩ	
Project No. : 19126714 Batch/es: ES1928334 & 225635		Sample Type Date Sampled	Primary 2/09/2019	Field Duplicate 2/09/2019	Field Triplicate 2/09/2019	-	
			,,	,,	,,		PDs
Chem Name	output unit	LOR				Primary vs Duplicate	Primary vs Triplicate
Inorganic compounds Ammonia (as N)	mg/kg	20	<20	<20	-	ND	-
Cyanide (free)	mg/kg	1	<1	<1	-	ND	-
Moisture							
Moisture	%	0.1	11.6	12.8	15	10%	26%
TRH-HSL TRH C6 - C10 Fraction F1	mg/kg	10	<10	<10	<25	ND	ND
TRH C6 - C10 Fraction Less BTEX F1	mg/kg	10	<10	<10	<25	ND	ND
TRH >C10 - C16 Fraction F2	mg/kg	50	<50	<50	<50	ND	ND
TRH >C10 - C16 Fraction Less Naphthalene (F2) TRH >C16 - C34 Fraction F3	mg/kg mg/kg	50 100	<50 <100	<50 <100	<50 <100	ND ND	ND ND
TRH >C34 - C40 Fraction F4	mg/kg	100	220	280	220	24%	0%
TRH+C10 - C40 (Sum of total) (Lab Reported)	mg/kg	50	220	280	220	24%	0%
	4	10				ND	ND
TRH C6 - C9 Fraction TRH C10 - C14 Fraction	mg/kg mg/kg	10 50	<10 <50	<10 <50	<25 <50	ND ND	ND ND
TRH C15 - C28 Fraction	mg/kg	100	<100	<100	<100	ND	ND
TRH C29 - C36 Fraction	mg/kg	100	190	240	190	23%	0%
TRH+C10 - C36 (Sum of total) (Lab Reported)	mg/kg	50	190	240	-	23%	-
BTEX Benzene	ma/ka	0.2	<0.2	<0.2	<0.2	ND	ND
Toluene	mg/kg mg/kg	0.2	<0.2	<0.2	<0.2	ND	ND
Ethylbenzene	mg/kg	0.5	<0.5	<0.5	<1	ND	ND
Xylenes (m & p)	mg/kg	0.5	< 0.5	< 0.5	<2	ND	ND
Xylene (o) Xylenes (Sum of total) (Lab Reported)	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	<1 <3	ND ND	ND ND
Xylenes (Sum of total) (Lab Reported) Total BTEX	mg/kg mg/kg	0.5	<0.5	<0.5	<3 -	ND	- ND
Metals	d'' '6'	0.2	- 6,4 i kao	-012			
Arsenic	mg/kg	5	5	6	4	18%	22%
Cadmium Chromium	mg/kg mg/kg	1 2	<1 7	<1 7	<0.4 6	ND 0%	ND 15%
Copper	mg/kg	5	6	7	6	15%	0%
Lead	mg/kg	5	8	9	8	12%	0%
Mercury	mg/kg	0.1	1.4	0.9	1	43%	33%
Nickel	mg/kg	2	4	4	4	0% 21%	0% 6%
Zinc Organochlorine Pesticides	mg/kg	5	17	21	18	2170	078
p,p-DDE	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
a-BHC	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
Aldrin	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
Dieldrin Aldrin & Dieldrin (Sum of total) (Lab Reported)	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	<0.1	ND ND	- ND
b-BHC	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
cis-Chlordane	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
trans-Chlordane Chlordane (Sum of total)	mg/kg	0.05	<0.05	<0.05 <0.05	<0.1	ND ND	ND
d-BHC	mg/kg mg/kg	0.05	<0.05	<0.05	<0.1	ND	- ND
DDD	mg/kg	0.05	< 0.05	< 0.05	<0.1	ND	ND
DDT	mg/kg	0.2	<0.2	<0.2	<0.1	ND	ND
DDT+DDE+DDD (Sum of total) (Lab Reported) Endosulfan	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	<0.1	ND ND	ND
Endosulfan I	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
Endosulfan II	mg/kg	0.05	< 0.05	< 0.05	<0.1	ND	ND
Endosulfan sulphate	mg/kg	0.05	< 0.05	<0.05	<0.1	ND	ND
Endrin Endrin aldehyde	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	ND ND	ND ND
Endrin aldenyde Endrin ketone	mg/кg mg/kg	0.05	<0.05	<0.05	<0.1	ND	- ND
g-BHC	mg/kg	0.05	< 0.05	< 0.05	<0.1	ND	ND
Heptachlor	mg/kg	0.05	< 0.05	< 0.05	<0.1	ND	ND
Heptachlor epoxide Hexachlorobenzene	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	<0.1 <0.1	ND ND	ND ND
Methoxychlor	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
Organophosphorous Pesticides	8						
Azinphos-methyl	mg/kg	0.05	< 0.05	< 0.05	<0.1	ND	ND
Bromophos-ethyl Carbophenothion	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	<0.1	ND ND	- ND
Carbophenothion Chlorfenvinphos	mg/kg	0.05	<0.05	<0.05	-	ND	-
Chlorpyriphos	mg/kg	0.05	<0.05	< 0.05	<0.1	ND	ND
Chlorpyriphos-methyl	mg/kg	0.05	< 0.05	< 0.05	<0.1	ND	ND
Demeton-s-methyl Diazinon	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	- <0.1	ND ND	- ND
Dichlorvos	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
Dimethoate	mg/kg	0.05	<0.05	<0.05	<0.1	ND	ND
Ethion	mg/kg	0.05	< 0.05	< 0.05	<0.1	ND	ND
Fenamiphos Fenthion	mg/kg mg/kg	0.05	<0.05 <0.05	<0.05 <0.05	-	ND ND	-
Malathion	mg/kg mg/kg	0.05	<0.05	<0.05	<0.1	ND	- ND
Parathion-methyl	mg/kg	0.2	<0.2	<0.2	-	ND	-
Monocrotophos	mg/kg	0.2	< 0.2	< 0.2	-	ND	-
Parathion Pirimphos-ethyl	mg/kg mg/kg	0.2	<0.2 <0.05	<0.2 <0.05	<0.1	ND ND	- ND
Prothiofos	mg/kg mg/kg	0.05	<0.05	<0.05	-	ND	-
РАН	00						
Acenaphthene	mg/kg	0.5	<0.5	<0.5	<0.1	ND	ND
Acenaphthylene Anthracene	mg/kg mg/kg	0.5	<0.5 <0.5	<0.5 <0.5	<0.1 <0.1	ND ND	ND ND
Benz(a)anthracene	mg/kg mg/kg	0.5	< 0.5	< 0.5	<0.1	ND	ND
	- ···o						

ATTACHMENT TO ITEM 24 - 28/10/19

Project: NSC Phase 1 ESA Waverton				0.01400	0.004.00	7	
Duplicate Analysis RPDs		Sample ID	BH01_0.1	QCA100	QCB100	-	
Project No. : 19126714		Sample Type	Primary	Field Duplicate	Field Triplicate	4	
Batch/es: ES1928334 & 225635		Date Sampled	2/09/2019	2/09/2019	2/09/2019		5
Chem Name	output unit	LOR		T		Primary vs Duplicate	Ds Primary vs Triplicate
Benzo(a)pyrene	mg/kg	0.5	< 0.5	< 0.5	< 0.05	ND	ND
Benzo(a)pyrene TEQ (lower bound)*	mg/kg	0.5	<0.5	<0.5	<0.5	ND	ND
Benzo(a)pyrene TEQ (medium bound)*	mg/kg	0.5	0.6	0.6	<0.5	0%	18%
Benzo(a)pyrene TEQ (upper bound)*	mg/kg	0.5	1.2	1.2	<0.5	0%	82%
Benzo(b)&(j)fluoranthene	mg/kg	0.5	<0.5	<0.5	-	ND	-
Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	<0.1	ND	ND
Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	-	ND	-
Chrysene	mg/kg	0.5	<0.5	<0.5	<0.1	ND	ND
Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	<0.1	ND	ND
Fluoranthene	mg/kg	0.5	<0.5	<0.5	<0.1	ND	ND
Fluorene	mg/kg	0.5	<0.5	<0.5	<0.1	ND	ND
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	<0.1	ND	ND
Naphthalene	mg/kg	0.5	< 0.5	<0.5	<0.1	ND	ND
Phenanthrene	mg/kg	0.5	< 0.5	<0.5	<0.1	ND	ND
Pyrene	mg/kg	0.5	< 0.5	<0.5	<0.1	ND	ND
PAH (Sum of Common 16 PAHs - Lab Reported)	mg/kg	0.5	< 0.5	<0.5	-	ND	-
Phenols	0, 0						
2,4,5-Trichlorophenol	mg/kg	0.5	< 0.5	< 0.5	-	ND	-
2,4,6-Trichlorophenol	mg/kg	0.5	< 0.5	< 0.5	-	ND	-
2,4-Dichlorophenol	mg/kg	0.5	< 0.5	<0.5	-	ND	-
2,6-Dichlorophenol	mg/kg	0.5	< 0.5	< 0.5	-	ND	-
2-Chlorophenol	mg/kg	0.5	< 0.5	<0.5	-	ND	-
4-Chloro-3-methylphenol	mg/kg	0.5	< 0.5	< 0.5	-	ND	-
Pentachlorophenol	mg/kg	1	<2	<2	-	ND	-
2,4-Dimethylphenol	mg/kg	0.5	< 0.5	<0.5		ND	-
2-Methylphenol	mg/kg	0.5	< 0.5	<0.5		ND	-
3- & 4- Methylphenol	mg/kg	0.5	<1	<1	-	ND	-
2-Nitrophenol	mg/kg	0.5	< 0.5	<0.5	-	ND	-
Phenol	mg/kg	0.5	< 0.5	<0.5		ND	-
Polychlorinated Biphenyls	. 0, 3						
PCB (Sum of Total-Lab Reported)	mg/kg	0.1	<0.1	<0.1	<0.1	ND	ND

Legend

Legend
ND = Not Detected (RPDs not calculated if both primary and duplicate results are below LOR)
- = Not analysed/calculated
Indicates RPD result does not meet the acceptable criteria
Acceptable RPDs:
RPD <= 30%
RPD > 30%, Analysis result < 10 times LOR
RPD <= 50%, Analysis result > 10 times LOR and < 20 times LOR

APPENDIX L

ら GOLDER

GOLDER ASSOCIATES PTY LTD IMPORTANT INFORMATION RELATING TO THIS REPORT

The document ("Report") to which this page is attached and which this page forms a part of, has been issued by Golder Associates Pty Ltd ("Golder") subject to the important limitations and other qualifications set out below.

This Report constitutes or is part of services ("Services") provided by Golder to its client ("Client") under and subject to a contract between Golder and its Client ("Contract"). The contents of this page are not intended to and do not alter Golder's obligations (including any limits on those obligations) to its Client under the Contract.

This Report is provided for use solely by Golder's Client and persons acting on the Client's behalf, such as its professional advisers. Golder is responsible only to its Client for this Report. Golder has no responsibility to any other person who relies or makes decisions based upon this Report or who makes any other use of this Report. Golder accepts no responsibility for any loss or damage suffered by any person other than its Client as a result of any reliance upon any part of this Report, decisions made based upon this Report or any other use of it.

This Report has been prepared in the context of the circumstances and purposes referred to in, or derived from, the Contract and Golder accepts no responsibility for use of the Report, in whole or in part, in any other context or circumstance or for any other purpose.

The scope of Golder's Services and the period of time they relate to are determined by the Contract and are subject to restrictions and limitations set out in the Contract. If a service or other work is not expressly referred to in this Report, do not assume that it has been provided or performed. If a matter is not addressed in this Report, do not assume that any determination has been made by Golder in regards to it.

At any location relevant to the Services conditions may exist which were not detected by Golder, in particular due to the specific scope of the investigation Golder has been engaged to undertake. Conditions can only be verified at the exact location of any tests undertaken. Variations in conditions may occur between tested locations and there may be conditions which have not been revealed by the investigation and which have not therefore been taken into account in this Report.

Golder accepts no responsibility for and makes no representation as to the accuracy or completeness of the information provided to it by or on behalf of the Client or sourced from any third party. Golder has assumed that such information is correct unless otherwise stated and no responsibility is accepted by Golder for incomplete or inaccurate data supplied by its Client or any other person for whom Golder is not responsible. Golder has not taken account of matters that may have existed when the Report was prepared but which were only later disclosed to Golder.

Having regard to the matters referred to in the previous paragraphs on this page in particular, carrying out the Services has allowed Golder to form no more than an opinion as to the actual conditions at any relevant location. That opinion is necessarily constrained by the extent of the information collected by Golder or otherwise made available to Golder. Further, the passage of time may affect the accuracy, applicability or usefulness of the opinions, assessments or other information in this Report. This Report is based upon the information and other circumstances that existed and were known to Golder when the Services were performed and this Report was prepared. Golder has not considered the effect of any possible future developments including physical changes to any relevant location.

Where permitted by the Contract, Golder may have retained subconsultants affiliated with Golder to provide some or all of the Services. However, it is Golder which remains solely responsible for the Services and there is no legal recourse against any of Golder's affiliated companies or the employees, officers or directors of any of them.

By date, or revision, the Report supersedes any prior report or other document issued by Golder dealing with any matter that is addressed in the Report.

Any uncertainty as to the extent to which this Report can be used or relied upon in any respect should be referred to Golder for clarification

golder.com

Stage 1 Engagement Outcomes Report **Ex-Waverton Bowling Club Site**

In accordance with the adopted Engagement Strategy (May 2019), Council is seeking community feedback regarding the potential future public use of the site, should a more permanent tenure arrangement be attained. Engagement will occur in two stages.

Stage 1 was undertaken from 27 June to 24 July 2019 and involved Council inviting key stakeholders to provide suggestions regarding proposed use of the site, to inform the Stage 2 wider engagement. We received a total of 61 emails, from the following stakeholders:

- 7 from Sport and Recreation Reference Group members, including sporting clubs and one • individual
- 1 from Waverton Peninsula Working Group •
- 5 from Precinct Committees •
- 1 from Waverton Hub
- 27 from local residents, including individual members of Precinct Committees (of this total, 14 contained similar content/form submission)
- 20 other (no address provided for confirmation as to whether are local resident), of this total, 11 • contained similar content/form submission)

Note: the purpose of the Stage 1 engagement was to seek suggested preferred uses of the site; not to quantify feedback/preference for the options suggested.

Council staff collated and analysed submissions. There was a broad range of uses suggested, however, regardless of the preferred use, the unified theme of submissions was that the site needs to remain as public land and meet community needs.

Feedback included a broad range of suggested uses for the site, with many requests for a combination of the following:

- Active recreation: •
 - Sports facilities:
 - multipurpose synthetic surface
 - futsal or small sided courts
 - netball
 - cricket nets
 - tennis
 - volleyball
 - basketball
 - lawn bowls bare foot bowls/casual bowls
 - boules area
 - hand ball
 - badmington
 - Indoor sports/basketball stadium
 - Outdoor gym/exercise station
 - Temporary plastic pool to give some swimming facility whilst NSOP is out of action, along with Lane Cove and Willoughby pools
- Passive recreation:
 - o Community garden/allotments examples Camperdown Commons (by Pocket City Farms). Long waitlist for a lot at the Coal Loader community garden

Stage 1 Engagement Outcomes Report **Ex-Waverton Bowling Club Site**

- Picnic facilities, BBQ, benches, tables with shade protection 0
- Outdoor chess, ping pong (bring your own bat)
- o Natural amphitheatre, that can be used for community performances/recitals, occasional outdoor cinema
- Water feature/foundation
- Rose or fruit garden (on part of the site)
- Urban forest add to the habitat and wildlife corridors in the area
- New multipurpose community facility/centre (with multi-generational focus): ٠
 - Club house for sporting group
 - o Commercial opportunity for café/coffee shop/restaurant/brasserie/bistro (or training facility e.g. TAFE or café using the products of the garden) with preference for outdoor deck area facing the harbour to take advantage of the harbour/city views or childcare/early learning centre
 - Creative hub including art gallery and performance space 0
 - Meeting rooms for use by local groups and individuals e.g. Precinct Committees, The 0 Waverton Hub, U3A, mothers groups, book clubs, bridge clubs, classes such as art, dance, cooking, knitting, quilting, health/fitness (e.g. yoga, tai chi, Zumba, strength and balance, table tennis, snooker, card tables), lectures/talks
 - Venue for private function hire e.g. weddings, parties, exhibitions, performances polling station (elections), hire by schools
 - Aboriginal restaurant/cultural facility/market 0
- **Playground:**
 - Relocate existing Wetherill Park playground
 - Fenced area
 - Different zones for different aged kids
 - New children's water play facilities/park to cool off in summer
 - New children's bike/scooter track
 - New amenities with parent/child toilet cubical, nappy change station

Other issues raised:

- Needs to remain as public land and meet community needs
- If the existing building is not fit for adaptive reuse, therefore a new building would be preferred ٠ over renovation/upgrade of the existing
- Demolition and re-incorporated back into surrounding park •
- Funding required to build new facilities acknowledged; commercial component necessary for • some form of cost recovery e.g. café/restaurant, childcare or fruit and veggie/charity shop. A purely commercial use of the land is "definitely out of the question"
- Tree canopy cover targets •
- The population is growing but new sportsfields are never added •
- Parking some said that existing parking options were enough; some concerns raised by residents •
- Floodlighting lighting required for evening use (to maximise utilisation); time limits for evening • use to minimise impact of neighbouring residents
- Accessible by public transport proximity to train and bus •
- Existing nearby public toilet facility •
- Usage should complement the Coal Loader Centre for Sustainability •
- Opportunity to link/integrate site the (proposed) Sydney Harbour High Line (i.e. provides • another attraction along the route)

Page 196

Stage 1 Engagement Outcomes Report Ex-Waverton Bowling Club Site

- Lack/limited capacity other community centre/hall facilities in immediate area only option is Uniting Church Hall on Bay Road
- Dougherty Centre, Chatswood good example
- Current waste disposal system on site is in poor condition and frequently creates spillages into the park area
- Sensitive revegetation plan required for linking the site to the existing parklands
- Use catering to dog walkers

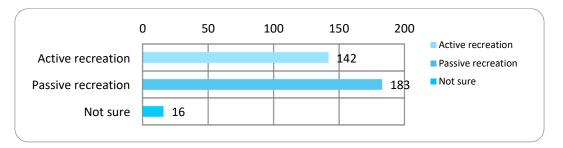
Next Steps

Commencing in August 2019, Council will seek the wider community's feedback during Stage 2, involving prioritisation of the various use options.

Note: Stage 2 sees some of the suggested uses available for the community to rank/prioritise. Some suggestions from Stage 1 have been discounted due to community facilities already available nearby:

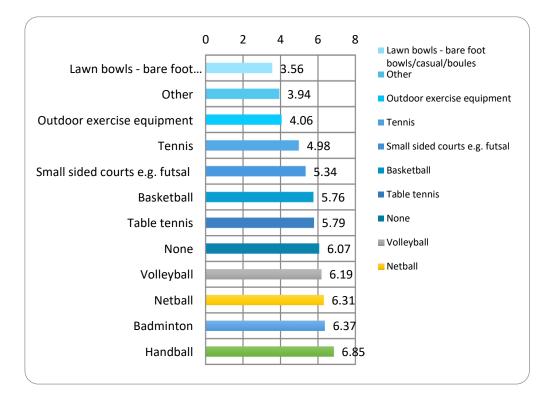
- Coal Loader Centre for Sustainability community gardens, performance spaces, artist spaces, workshops, function spaces
- Waverton Park Merrett Playground, outdoor gym equipment and toilet/nappy change facilities

For more information visit Council's website or https://yoursay.northsydney.nsw.gov.au/EWBS



Stage 2 Online Survey Results Summary

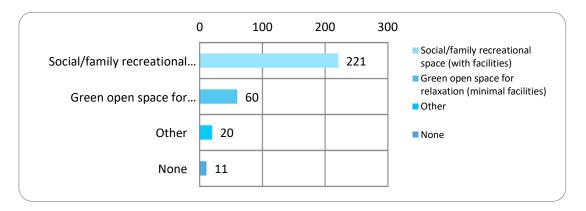
The online survey ran from 19 August to 15 September 2019. There were 342 responses. Below are the survey results as exported from Engagement HQ.


1. What is your preferred use of the site? (choose 1 only)

Majority preference was for passive recreation (54%), followed by active recreation (42%).

2. If the site is used for ACTIVE RECREATION, rank your preferred use: (rank 1 to 10 or none/other, 1 = most preferred, 10 = least preferred)

312 respondents completed this question. The lower the ranking, the more preferred that option is. Majority preference was for lawn bowls including bare foot bowls/casual bowls and boules (average ranking 3.56), followed by other (average ranking 3.94) and outdoor exercise equipment (average ranking 4.06).

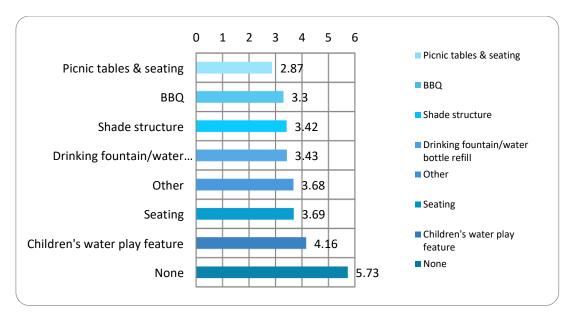


The following table details the 'other' responses. Note: some responses contained more than one suggestion - multiple suggestions counted individually.

Suggestion	No.
Aboriginal cultural/heritage centre	1
Basketball court/hoops (3x3)	4
Childcare	1
Circus skills	1
Community garden (pocket city farm)	6
Community piano	1
Cricket nets/facilities	9
Cricket nets/facilities - indoor	9
Dog park (enclosed/off leash)	3
Facilities (public amenities - toilets, seating, picnic tables)	3
Food and beverage (café or club)	12
Football field (full size/AFL)	2
Footgolf	1
Health and wellbeing programs (with gym)	4
Kids bike track	3
Lacrosse	1
Lawn bowls (includes bare foot bowls/casual bowls and boules	3
Men's Shed	1
Mountain bike jumps	1
Multipurpose community centre	5
Parkland extension	1
Pickleball (paddleball)	1
Play space/playground - adventure (with climbing wall)	6
Play space/playground - inclusive/all abilities	3
Shopping centre with cinema	1
Skate park	1
Swimming pool (50m)	1
Other	3

3a. If the site is used for PASSIVE RECREATION, which would you prefer? (choose 1 only)

312 respondents completed this question. Majority preference was for social/family recreational space (71%), followed by green open space for relaxation (19%) and other (6%).

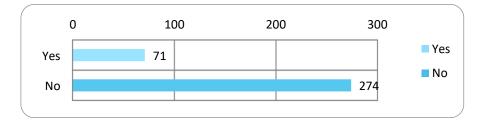


The following table details the 'other' responses. Note: some responses contained more than one suggestion - multiple suggestions counted individually.

Suggestion	No.
Amphitheatre - grass	1
Basketball court/hoops (3x3)	4
Childcare	1
Community garden (pocket city farm)	17
Community piano	1
Cricket nets/facilities	1
Dog park (enclosed/off leash)	6
Facilities (public amenities - toilets, seating, picnic tables, shade, BBQ, water drink station)	14
Food and beverage (café or club, distillery)	28
Health and wellbeing programs (with gym)	5
Hotel	1
Kids bike track	5
Lawn bowls (includes bare foot bowls/casual bowls and boules	4
Men's Shed	2
Multipurpose community centre	15
Parkland extension (landscaping - trees, pathways)	10
Play space/playground - adventure (with climbing wall, flying fox, sunken trampolines, water play)	9
Play space/playground - inclusive (all abilities)	2
Outdoor exercise equipment	2
Skate park/ramp	2
Other	4

3b. If the area were to be used for social/family space (passive recreation), rank your preferred facilities: (rank 1 to 6 or none/other)

Majority preference was for picnic tables and seating (average ranking 2.87), followed by BBQ facilities (average ranking 3.3) and shade structure (average ranking 3.42). The lower the ranking, the more preferred that option is.


The following table compares the 'other' responses from Q2 and Q3a. The suggestions per question cannot be added together to provide a total, as many respondents provided the same response to both questions (and duplicates Q3b). The purpose of the comparison is to indicate the preferred site features/facilities in addition to preferred site use, whether passive or active.

Suggestion	Q2 No.	Q3a No.
Aboriginal cultural/heritage centre	1	0
Amphitheatre - grass	0	1
Basketball court/hoops (3x3)	4	4
Childcare	1	1
Community garden (pocket city farm)	6	17
Community piano	1	1
Cricket nets/facilities	9	1
Cricket nets/facilities - indoor	9	0
Dog park (enclosed/off leash)	3	6
Facilities (public amenities - toilets, seating, picnic tables, shade, BBQ, water drink station)	3	14
Food and beverage (café or club, distillery)	12	28
Football field (full size/AFL)	2	0
Footgolf	1	0
Health and wellbeing programs (with gym)	4	5
Hotel	0	1
Kids bike track	3	5
Lawn bowls (includes bare foot bowls/casual bowls and boules	3	4
Men's Shed	1	2
Multipurpose community centre	5	15
Parkland extension (landscaping - trees, pathways)	1	10
Pickleball (paddleball)	1	0
Play space/playground - adventure (with climbing wall, flying fox, sunken trampolines, water play)	6	9
Play space/playground - inclusive/all abilities	3	2
Shopping centre with cinema	1	0
Outdoor exercise equipment	0	2
Skate park/ramp	1	2
Swimming pool (50m)	1	0
Other	4	3

Respondent Information


4. Are you associated with a sporting group? (required)

79% of respondents are not associated with a sporting group. 21% are associated with a sporting group.

5. Are you associated with a community group? (required)

87% of respondents are not associated with a community group. 13% are associated with a sporting group.

6. Respondent Suburb

89% of respondents were from the North Sydney LGA (304 of total 342 responses) - Waverton (35%), followed by Wollstonecraft (20%) and North Sydney (11%). 11% (38) of respondents were from outside the North Sydney LGA.

/	0	50	10		1 -	2
	0	50	10	0	150	J WAVERTON, NSW
WAVERTON, NSW					118	WOLLSTONECRAFT, NSW
WOLLSTONECRAFT, NSW			70			NORTH SYDNEY, NSW
NORTH SYDNEY, NSW		39				CROWS NEST, NSW
CROWS NEST, NSW	20					MCMAHONS POINT, NSW
MCMAHONS POINT, NSW	1 9					CAMMERAY, NSW
CAMMERAY, NSW	1 3					NEUTRAL BAY, NSW
NEUTRAL BAY, NSW	8					CREMORNE, NSW
CREMORNE, NSW	6					KIRRIBILLI, NSW
KIRRIBILLI, NSW	5					MOSMAN, NSW
MOSMAN, NSW	<mark>-</mark> 5					NAREMBURN, NSW
NAREMBURN, NSW	4					GREENWICH, NSW
GREENWICH, NSW	4					CASTLECRAG, NSW
CASTLECRAG, NSW	2					NORTHBRIDGE, NSW
NORTHBRIDGE, NSW	2					
ST LEONARDS, NSW	2					ST LEONARDS, NSW
CREMORNE POINT, NSW	2					CREMORNE POINT, NSW
MILSONS POINT, NSW	2					MILSONS POINT, NSW
GLADESVILLE, NSW	2					GLADESVILLE, NSW
LANE COVE WEST, NSW	2					LANE COVE WEST, NSW
CROMER, NSW	1					CROMER, NSW
BLACKTOWN, NSW	1					BLACKTOWN, NSW
ARTARMON, NSW	1					ARTARMON, NSW
NOT IN AUSTRALIA	1					NOT IN AUSTRALIA
ROZELLE, NSW	1					ROZELLE, NSW
WILLOUGHBY, NSW	1					WILLOUGHBY, NSW
ROSEVILLE CHASE, NSW	1					ROSEVILLE CHASE, NSW
CASTLE COVE, NSW	1					CASTLE COVE, NSW
CREMORNE, QLD	1					CREMORNE, QLD
LANE COVE NORTH, NSW	1					LANE COVE NORTH, NSW
MAROUBRA SOUTH, NSW	1					MAROUBRA SOUTH, NSW
CHATSWOOD, NSW	1					
FRENCHS FOREST, NSW	1					CHATSWOOD, NSW
CROYDON, NSW	1					FRENCHS FOREST, NSW
DARLING POINT, NSW	1					CROYDON, NSW
POTTS POINT, NSW	1					DARLING POINT, NSW
NEWPORT, NSW	1					POTTS POINT, NSW
						NEWPORT, NSW